Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2015-I-19

Posted on 16-06-202115-06-2023 By app.cch No Comments on 2015-I-19
Ans: (a) (i) $42.9\text{ cm}$ (ii) $66.6^\circ$ (iii) The area increases while $\angle BCD$ increases from $105^\circ$ to $112^\circ$. The area decreases while $\angle BCD$ increases rom $112^\circ$ to $145^\circ$. (b) $3690\text{ cm}^3$

    1. By applying the cosine law to $\Delta ABC$, we have

      $\begin{array}{rcl}
      AC^2 & = & AB^2 + BC^2 – 2(AB)(AC)\cos \angle ABC \\
      AC^2 & = & (40)^2 + (24)^2 -2(40)(24) \cos \angle 80^\circ \\
      AC & = & 42.925\ 464\ 46
      \end{array}$

      Therefore, the distance between $A$ and $C$ is $42.9\text{ cm}$.

    2. By applying the sine law to $\Delta ABC$, we have

      $\begin{array}{rcl}
      \dfrac{AB}{\sin \angle ACB} & = & \dfrac{AC}{\sin \angle ABC} \\
      \dfrac{40}{\sin \angle ACB} & = & \dfrac{42.925\ 464\ 46}{\sin 80^\circ} \\
      \sin \angle ACB & = & \dfrac{40\sin 80^\circ}{42.925\ 464\ 46} \\
      \sin \angle ACB & = & 0.917\ 690\ 926 \\
      \angle ACB & = & 66.590\ 814\ 87^\circ \\
      \angle ACB & \approx & 66.6^\circ
      \end{array}$

    3. Join $AC$ and $AD$.

      It is obviously that the paper card consists of three parts, $\Delta ABC$, $\Delta ACD$ and $\Delta AB’D$. Since $AB=AB’=40$, $BC= B’D=24$ and $\angle ABC = \angle AB’D=80^\circ$, then $\Delta ABC \cong \Delta AB’D$. The area of $\Delta ABC$

      $\begin{array}{cl}
      = & \dfrac{1}{2} \times AB \times BC \times \sin \angle ABC \\
      = & \dfrac{1}{2} \times 40 \times 24 \times \sin 80^\circ \\
      = & 480\sin80^\circ \text{ cm}^2
      \end{array}$

      Since $AC=AD$, then the area of $\Delta ACD$

      $\begin{array}{cl}
      = & \dfrac{1}{2} \times AC \times AD \times \sin \angle CAD \\
      = & \dfrac{1}{2} \times 42.925\ 464\ 46^2 \times \sin \angle CAD \\
      = & 921.297\ 749\ 4 \sin \angle CAD \text{ cm}^2
      \end{array}$

      Therefore, the area of the paper card

      $\begin{array}{cl}
      = & 2 \times 480 \sin 80^\circ + 921.297\ 749\ 4 \sin \angle CAD \\
      = & 960 \sin 80^\circ + 921.297\ 749\ 4 \sin \angle CAD
      \end{array}$

      Hence, the greater the value of $\sin \angle CAD$, the greater the area of the paper card.

      Note that $AC=AD$, then $\angle ACD = \angle ADC$.

      $\begin{array}{rcl}
      \angle CAD & = & 180^\circ – 2 \times \angle ACD \\
      \angle CAD & = & 180^\circ – 2 \times (\angle BCD – \angle ACB) \\
      \angle CAD & = & 180^\circ – 2\angle BCD + 2(66.590\ 814\ 87^\circ) \\
      \angle CAD & = & 313.181\ 629\ 7^\circ – 2\angle BCD
      \end{array}$

      Since $105^\circ \le \angle BCD \le 145^\circ$, then we have

      $23.181\ 629\ 74^\circ \le \angle CAD \le 103.181\ 629\ 7^\circ$.

      Therefore, the value of $\sin \angle CAD$ attains its maximum when $\angle CAD = 90^\circ$. Hence, the area of the paper card attains its maximum when $\angle CAD = 90^\circ$. For $\angle CAD = 90^\circ$, $\angle ACD = 45^\circ$. Therefore, the area of the paper card attains its maximum when $\angle BCD$

      $\begin{array}{cl}
      = & 45^\circ + \angle ACB \\
      = & 45^\circ + 66.590\ 814\ 87^\circ \\
      = & 111.590\ 814\ 9^\circ
      \end{array}$

      Hence, we can draw a conclusion:

      When $\angle BCD$ increases from $105^\circ$ to $111.590\ 814\ 9^\circ$, the area of the paper card increases. And when $\angle BCD$ increases from $111.590\ 814\ 9^\circ$ to $145^\circ$, the area of the paper card decreases.

  1. Denote $E$ the mid-point of $CD$.

    Consider $\Delta ACE$,

    $\begin{array}{rcl}
    \angle ACD & = & \angle BCD – \angle ACB \\
    \angle ACD & = & 132^\circ – 66.590\ 814\ 87^\circ \\
    \angle ACD & = & 65.409\ 185\ 513^\circ
    \end{array}$

    Since $AC=AD$ and $E$ is the mid-point of $CD$, then $\angle AEC$ is a right-angle. Hence, we have

    $\begin{array}{rcl}
    \cos \angle ACE & = & \dfrac{CE}{AC} \\
    CE & = & AC \cos \angle ACE \\
    CE & = & 42.925\ 464\ 46 \cos 65.409\ 185\ 513^\circ \\
    CE & = & 17.862\ 789\ 29 \text{ cm}
    \end{array}$

    and

    $\begin{array}{rcl}
    \sin \angle ACE & = & \dfrac{AE}{AC} \\
    AE & = & AC \sin \angle ACE \\
    AE & = & 42.925\ 464\ 46 \sin 65.409\ 185\ 513^\circ \\
    AE & = & 39.032\ 246\ 38\text{ cm}
    \end{array}$

    Consider $\Delta BCE$. Since $BC = BD$ and $E$ is the mid-point of $CD$, then $\angle BEC$ is a right-angle. By applying the Pythagoras Theorem to $\Delta BCD$, we have

    $\begin{array}{rcl}
    BE^2 & = & BC^2 – CE^2 \\
    BE & = & \sqrt{24^2 – (17.862\ 789\ 29)^2} \\
    BE & = & 16.028\ 747\ 88 \text{ cm}
    \end{array}$

    Consider $\Delta ABE$. By applying the cosine law to $\Delta ABE$, we have

    $\begin{array}{rcl}
    \cos \angle AEB & = & \dfrac{AE^2 + BE^2 – AB^2}{2(AE)(BE)} \\
    \cos \angle AEB & = & 0.144\ 202\ 402 \\
    \angle AEB & = & 81.708\ 905\ 17^\circ
    \end{array}$

    Let $X$ be the foot of perpendicular of $B$ on the plane $ACD$. Since $\Delta ABC \cong \Delta ABD$, then $X$ lies on $AE$.

    Consider $\Delta BXE$. Note that $\angle BXE$ is a right-angle. Hence, we have

    $\begin{array}{rcl}
    \sin \angle BEX & = & \dfrac{BX}{BE} \\
    BX & = & BE \sin \angle BEX \\
    BX & = & 16.028\ 747\ 88 \sin 81.708\ 905\ 17^\circ \\
    BX & = & 15.861\ 218\ 83 \text{ cm}
    \end{array}$

    Hence, the volume of the pyramid $ABCD$

    $\begin{array}{cl}
    = & \dfrac{1}{3} \times \text{ the area of $\Delta ACD$} \times BX \\
    = & \dfrac{1}{3} \times \dfrac{1}{2} \times CD \times AE \times BX \\
    = & 3686.278\ 337 \text{ cm}^3 \\
    \approx & 3690 \text{ cm}^3
    \end{array}$

Same Topic:

Default Thumbnail2014-I-17 Default Thumbnail2018-I-17 Default Thumbnail2021-I-18 Default Thumbnail2022-I-18
2015, HKDSE-MATH, Paper 1 Tags:3D Problems

Post navigation

Previous Post: 2016-II-45
Next Post: 2014-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme