Ans: $\dfrac{-13}{(4x-5)(1-6x)}$
$\begin{array}{cl}
& \dfrac{2}{4x-5} + \dfrac{3}{1-6x} \\
= & \dfrac{2(1-6x)}{(4x-5)(1-6x)} + \dfrac{3(4x-5)}{(1-6x)(4x-5)} \\
= & \dfrac{2(1-6x) + 3(4x-5)}{(4x-5)(1-6x)} \\
= & \dfrac{2-12x+12x-15}{(4x-5)(1-6x)} \\
= & \dfrac{-13}{(4x-5)(1-6x)} \\
= & \dfrac{13}{(4x-5)(6x-1)}
\end{array}$
$\begin{array}{cl}
& \dfrac{2}{4x-5} + \dfrac{3}{1-6x} \\
= & \dfrac{2(1-6x)}{(4x-5)(1-6x)} + \dfrac{3(4x-5)}{(1-6x)(4x-5)} \\
= & \dfrac{2(1-6x) + 3(4x-5)}{(4x-5)(1-6x)} \\
= & \dfrac{2-12x+12x-15}{(4x-5)(1-6x)} \\
= & \dfrac{-13}{(4x-5)(1-6x)} \\
= & \dfrac{13}{(4x-5)(6x-1)}
\end{array}$