- In $\Delta ADE$,
$\begin{array}{rcll}
\angle ADC & = & \angle AEB & \text{(given)} \\
AD & = & AE & \text{(sides opp. eq. $\angle$s)}
\end{array}$In $\Delta ACD$ and $\Delta ABE$,
$\begin{array}{rcll}
\angle ADC & = & \angle AEB & \text{(given)} \\
AD & = & AE & \text{(proved)} \\
CD & = & CE + ED & \\
& = & BD + ED & \text{(given)} \\
& = & BE &
\end{array}$Therefore $\Delta ACD \cong \Delta ABE$ (S.A.S.).
-
- Note that $AD = AE$. Then $\Delta ADE$ is an isosceles triangle. Note also that $DM = EM$. Then $AM$ is the median of the isosceles $\Delta ADE$. With the base $DE$, the median is the same as the height of the isosceles $\Delta ADE$. Hence, $\angle AMD = 90^\circ$. Then we have
$\begin{array}{rcll}
AM^2 & = & AD^2 – DM^2 & \text{(Pyth. Thm.)} \\
AM & = & \sqrt{15^2 – (\dfrac{18}{2})^2} & \\
AM & = & 12 \text{ cm}
\end{array}$ - Consider $\Delta ABM$,
$\begin{array}{rcll}
AB^2 & = & AM^2 + BM^2 & \text{(Pyth. Thm.)} \\
AB & = & \sqrt{12^2 + (9+7)^2} & \\
AB & = & 20 \text{ cm} &
\end{array}$Note that $AD = AE = 15\text{ cm}$. Consider $\Delta ABE$,
$\begin{array}{rcl}
AB^2 + AE^2 & = & 20^2 + 15^2 \\
& = & 625
\end{array}$$\begin{array}{rcl}
BE^2 & = & (7+18)^2 \\
& = & 625
\end{array}$$\because AB^2 + AE^2 = BE^2 = 625$,
$\therefore$ by the converse of Pythagoras Theorem, $\Delta ABE$ is a right-angled triangle.
- Note that $AD = AE$. Then $\Delta ADE$ is an isosceles triangle. Note also that $DM = EM$. Then $AM$ is the median of the isosceles $\Delta ADE$. With the base $DE$, the median is the same as the height of the isosceles $\Delta ADE$. Hence, $\angle AMD = 90^\circ$. Then we have
2016-I-13
Ans: (b) (i) $12\text{ cm}$ (ii) Yes