Ans: No
Let $\sigma$ be the standard deviation of the scores.
Let $\sigma$ be the standard deviation of the scores.
$\begin{array}{rcl}
\dfrac{22 – 61}{\sigma} & = & -2.6 \\
-2.6 \sigma & = & -39 \\
\sigma & = & 15
\end{array}$
Let $x$ marks be the score of Mary. Hence, we have
$\begin{array}{rcl}
\dfrac{x-61}{15} & = & 1.4 \\
x – 61 & = & 21 \\
x & = & 82
\end{array}$
The difference of the scores of Mary and Albert
$\begin{array}{cl}
= & 82 – 22 \\
= & 60 \text{ marks} \\
> & 59 \text{ marks}
\end{array}$
Therefore, the range of the distribution is at least $60$ marks. The claim is not correct.