- Sub. $y=19$ into the equation of $\Gamma$, we have$\begin{array}{rcl}
2x^2 – 2kx + 2x -3k + 8 & = & 19 \\
2x^2 +(-2k + 2) x +(-3k-11) & = & 0 \ \ldots (*)
\end{array}$Therefore, we have
$\begin{array}{rcl}
\Delta & = & (-2k+2)^2 – 4(2)(-3k-11) \\
& = & 4k^2 – 8k + 4 +24k + 88 \\
& = & 4k^2 + 16k + 92 \\
& = & 4(k^2 + 4k + 23) \\
& = & 4(k^2 + 4k + 4 + 19) \\
& = & 4[(k + 4)^2 +19] \\
& = & 4(k+4)^2 + 76
\end{array}$For all real constant $k$,
$\begin{array}{rcl}
(k+2)^2 & \ge & 0 \\
4(k+2)^2 + 76 & > & 0
\end{array}$Therefore, $L$ and $\Gamma$ intersect at two distinct points.
-
- Note that $a$ and $b$ are the two roots of the equation $(*)$, then we have$\begin{array}{rcl}
a + b & = & -\dfrac{-2k+2}{2} \\
a + b & = & k-1
\end{array}$and also
$\begin{array}{rcl}
ab & = & \dfrac{-3k-11}{2}
\end{array}$Hence, we have
$\begin{array}{cl}
& (a-b)^2 \\
= & a^2 – 2ab + b^2 \\
= & a^2 +2ab + b^2 -4ab \\
= & (a+b)^2 – 4ab \\
= & (k-1)^2 – 4 \times ( \dfrac{-3k-11}{2} ) \\
= & (k^2 -2k + 1) + 6k + 22 \\
= & k^2 +4k + 23
\end{array}$ - The distance between $A$ and $B$$\begin{array}{cl}
= & \left| a -b \right| \\
= & \sqrt{(a-b)^2} \\
= & \sqrt{k^2 + 4k + 23} \\
= & \sqrt{k^2 + 4k + 4 + 19} \\
= & \sqrt{(k+2)^2 + 19} \\
\ge & \sqrt{19} \text{, for any real constant $k$} \\
> & 4
\end{array}$Therefore, it is impossible that the distance between $A$ and $B$ less than $4$.
- Note that $a$ and $b$ are the two roots of the equation $(*)$, then we have$\begin{array}{rcl}
2017-I-18
Ans: (b) (ii) No