Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2017-I-19

Posted on 16-06-202115-06-2023 By app.cch No Comments on 2017-I-19
Ans: (a) $45.7\text{ cm}$ (b) (i) $11.4\text{ cm}$ (ii) $458\text{ cm}^2$ (iii) $21.4^\circ$ (iv) No

  1. By applying sine law to $\Delta ABC$, we have

    $\begin{array}{rcl}
    \dfrac{AC}{\sin \angle ABC} & = & \dfrac{BC}{\sin \angle BAC} \\
    \dfrac{AC}{\sin (180^\circ – 30^\circ-42^\circ)} & = & \dfrac{24}{\sin 30^\circ} \\
    AC & = & 45.650\ 712\ 78 \text{ cm}
    \end{array}$

    1. Join $D$, $E$ and $F$. Note that $DEF$ is a straight line.

      Since $D$ and $E$ are points lying on the horizontal ground vertically below the vertices $A$ and $C$ respectively, then $\Delta ADF \sim \Delta CEF$. Therefore, we have

      $\begin{array}{rcl}
      \dfrac{AD}{CD} & = & \dfrac{AF}{CF} \\
      \dfrac{10}{2} & = & \dfrac{AC + CF}{CF} \\
      10 CF & = & 2AC + 2CF \\
      8CF & = & 2AC \\
      CF & = & 11.412\ 678\ 2\text{ cm}
      \end{array}$

    2. Note that the height of $\Delta ABC$ and that of $\Delta ABF$ are the same. Therefore, the height of $\Delta ABF$

      $\begin{array}{cl}
      = & BC \times \sin \angle BCA \\
      = & 24 \times \sin 42^\circ \text{ cm}
      \end{array}$

      $\therefore$ the area of $\Delta ABF$

      $\begin{array}{cl}
      = & \dfrac{1}{2} \times AF \times \text{the height of } \Delta ABF \\
      = & \dfrac{1}{2}\times ( 45.650\ 712\ 78 + 11.412\ 678\ 2) \times (24 \times \sin 42^\circ) \\
      = & 458.194\ 336\ 9\text{ cm}^2
      \end{array}$

    3. Join $FB$. Extend $FB$ to point $X$ such that $AX \perp FB$ and $DX \perp FB$.

      Note that the required angle is $\angle AXD$.

      By applying cosine law to $\Delta BCF$, we have

      $\begin{array}{rcl}
      BF^2 & = & CF^2 +BC^2 -2(BC)(BF)\cos \angle BCF \\
      BF^2 & = & (11.412\ 678\ 2)^2 +24^2 – 2(11.412\ 678\ 2)(24) \cos (180^\circ – 42^\circ) \\
      BF & = & 33.366\ 904\ 449\text{ cm}
      \end{array}$

      Note that $AX$ is the height of $\Delta ABF$ with base $BF$. Therefore, by the result of (b)(ii), we have

      $\begin{array}{rcl}
      \dfrac{1}{2} \times AX \times BF & = & \text{the area of }\Delta ABF \\
      \dfrac{1}{2} \times AX \times 33.366\ 904\ 449 & = & 458.194\ 336\ 9 \\
      AX & = & 27.464\ 000\ 26 \text{ cm}
      \end{array}$

      Consider $\Delta ADX$,

      $\begin{array}{rcl}
      \sin \angle AXD & = & \dfrac{AD}{AX} \\
      \sin \angle AXD & = & \dfrac{10}{27.464\ 000\ 26} \\
      \angle AXD & = & 21.353\ 006\ 46^\circ
      \end{array}$

      Therefore, the inclination of the thin metal sheet $ABC$ to the horizontal ground is $21.4^\circ$.

    4. Join $BD$ and $DF$.

      Note that $DX$ is the height of $\Delta BDF$ with base $BF$. Therefore, the area of $\Delta BDF$

      $\begin{array}{cl}
      = & \dfrac{1}{2} \times DX \times BF \\
      = & \dfrac{1}{2} \times \dfrac{AD}{\tan \angle AXD} \times BF \\
      = & \dfrac{1}{2} \times \dfrac{10}{\tan 21.353\ 006\ 46^\circ} \times 33.366\ 904\ 449 \\
      = & 426.741\ 482\text{ cm}^2 \\
      < & 460\text{ cm}^2 \end{array}$

      Hence, I don’t agree with the craftsman’s claim.

Same Topic:

Default Thumbnail2013-I-18 Default Thumbnail2016-I-19 Default Thumbnail2017-II-39 Default Thumbnail2019-I-18
2017, HKDSE-MATH, Paper 1 Tags:3D Problems

Post navigation

Previous Post: 2018-II-45
Next Post: 2016-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme