- By applying sine law to $\Delta ABC$, we have
$\begin{array}{rcl}
\dfrac{AC}{\sin \angle ABC} & = & \dfrac{BC}{\sin \angle BAC} \\
\dfrac{AC}{\sin (180^\circ – 30^\circ-42^\circ)} & = & \dfrac{24}{\sin 30^\circ} \\
AC & = & 45.650\ 712\ 78 \text{ cm}
\end{array}$- Join $D$, $E$ and $F$. Note that $DEF$ is a straight line.
Since $D$ and $E$ are points lying on the horizontal ground vertically below the vertices $A$ and $C$ respectively, then $\Delta ADF \sim \Delta CEF$. Therefore, we have
$\begin{array}{rcl}
\dfrac{AD}{CD} & = & \dfrac{AF}{CF} \\
\dfrac{10}{2} & = & \dfrac{AC + CF}{CF} \\
10 CF & = & 2AC + 2CF \\
8CF & = & 2AC \\
CF & = & 11.412\ 678\ 2\text{ cm}
\end{array}$ - Note that the height of $\Delta ABC$ and that of $\Delta ABF$ are the same. Therefore, the height of $\Delta ABF$
$\begin{array}{cl}
= & BC \times \sin \angle BCA \\
= & 24 \times \sin 42^\circ \text{ cm}
\end{array}$$\therefore$ the area of $\Delta ABF$
$\begin{array}{cl}
= & \dfrac{1}{2} \times AF \times \text{the height of } \Delta ABF \\
= & \dfrac{1}{2}\times ( 45.650\ 712\ 78 + 11.412\ 678\ 2) \times (24 \times \sin 42^\circ) \\
= & 458.194\ 336\ 9\text{ cm}^2
\end{array}$ - Join $FB$. Extend $FB$ to point $X$ such that $AX \perp FB$ and $DX \perp FB$.
Note that the required angle is $\angle AXD$.
By applying cosine law to $\Delta BCF$, we have
$\begin{array}{rcl}
BF^2 & = & CF^2 +BC^2 -2(BC)(BF)\cos \angle BCF \\
BF^2 & = & (11.412\ 678\ 2)^2 +24^2 – 2(11.412\ 678\ 2)(24) \cos (180^\circ – 42^\circ) \\
BF & = & 33.366\ 904\ 449\text{ cm}
\end{array}$Note that $AX$ is the height of $\Delta ABF$ with base $BF$. Therefore, by the result of (b)(ii), we have
$\begin{array}{rcl}
\dfrac{1}{2} \times AX \times BF & = & \text{the area of }\Delta ABF \\
\dfrac{1}{2} \times AX \times 33.366\ 904\ 449 & = & 458.194\ 336\ 9 \\
AX & = & 27.464\ 000\ 26 \text{ cm}
\end{array}$Consider $\Delta ADX$,
$\begin{array}{rcl}
\sin \angle AXD & = & \dfrac{AD}{AX} \\
\sin \angle AXD & = & \dfrac{10}{27.464\ 000\ 26} \\
\angle AXD & = & 21.353\ 006\ 46^\circ
\end{array}$Therefore, the inclination of the thin metal sheet $ABC$ to the horizontal ground is $21.4^\circ$.
- Join $BD$ and $DF$.
Note that $DX$ is the height of $\Delta BDF$ with base $BF$. Therefore, the area of $\Delta BDF$
$\begin{array}{cl}
= & \dfrac{1}{2} \times DX \times BF \\
= & \dfrac{1}{2} \times \dfrac{AD}{\tan \angle AXD} \times BF \\
= & \dfrac{1}{2} \times \dfrac{10}{\tan 21.353\ 006\ 46^\circ} \times 33.366\ 904\ 449 \\
= & 426.741\ 482\text{ cm}^2 \\
< & 460\text{ cm}^2 \end{array}$Hence, I don’t agree with the craftsman’s claim.
- Join $D$, $E$ and $F$. Note that $DEF$ is a straight line.
2017-I-19
Ans: (a) $45.7\text{ cm}$ (b) (i) $11.4\text{ cm}$ (ii) $458\text{ cm}^2$ (iii) $21.4^\circ$ (iv) No