Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2017-II-16

Posted on 16-06-202115-06-2023 By app.cch No Comments on 2017-II-16
Ans: D

Since $\Delta CEH \sim \Delta CBG$, then we have

$\begin{array}{rcl}
\dfrac{CE}{CB} & = & \dfrac{EH}{BG} \\
\dfrac{CE}{CE + EB} & = & \dfrac{EH}{BG} \\
\dfrac{3}{3 + 2} & = & \dfrac{EH}{BG} \\
BG : EH & = & 5 : 3
\end{array}$

Since $\Delta CEH \cong \Delta AFG$, then $EH = FG$. Hence, we have $BG:FG = 5:3$.

Since $\Delta AFG$ and $\Delta ABG$ have the same height with respect to the bases $FG$ and $BG$ respectively, then we have

$\begin{array}{rcl}
\dfrac{\text{Area of }\Delta AFG}{\text{Area of }\Delta ABG} & = & \dfrac{FG}{BG} \\
\dfrac{\text{Area of }\Delta AFG}{135} & = & \dfrac{3}{5} \\
\text{Area of }\Delta AFG & = & 81 \text{ cm}^2
\end{array}$

Since $\Delta ABG \cong \Delta CDH$, then the area of $\Delta CDH = 135\text{ cm}^2$.

Since $\Delta CEH \sim \Delta CBG$ and $BG:EH=5:3$, then $CG: CH = 5 : 3$. Hence, $CH:HG = 3:2$.

Since $\Delta CEH \cong \Delta AFG$, then $CH = AG$. Hence, we have

$\begin{array}{cl}
& CH : CA \\
= & CH : (CH + HG + GA) \\
= & 3 : 8
\end{array}$

Since $\Delta CDH$ and $\Delta CDA$ have the same height with respect to the bases $CH$ and $CA$ respectively, then we have

$\begin{array}{rcl}
\dfrac{\text{Area of }\Delta CDH}{\text{Area of }\Delta CDA} & = & \dfrac{CH}{CA} \\
\dfrac{135}{\text{Area of }\Delta CDA} & = & \dfrac{3}{8} \\
\text{Area of }\Delta CDA & = & 360 \text{ cm}^2
\end{array}$

Therefore, the area of the quadrilateral $DFGH$

$\begin{array}{cl}
= & \text{Area of }\Delta CDA – \text{Area of }\Delta CDH – \text{Area of }\Delta AFG \\
= & 360 – 135 – 81 \\
= & 144 \text{ cm}^2
\end{array}$

Same Topic:

Default Thumbnail2012PP-II-11 Default Thumbnail2017-I-12 Default Thumbnail2017-II-14 Default Thumbnail2017-II-15
2017, HKDSE-MATH, Paper 2 Tags:Mensuration

Post navigation

Previous Post: 2018-II-45
Next Post: 2016-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme