- The volume of water in the vessel
$\begin{array}{cl}
= & \pi \times 8^2 \times 64 \\
= & 4096\pi \text{ cm}^3
\end{array}$ - Let $r\text{ cm}$ and $h \text{ cm}$ be the radius of the water surface and the depth of water in the vessel respectively.
$\begin{array}{rcl}
\dfrac{r}{20} & = & \dfrac{h}{60} \\
r & = & \dfrac{h}{3}
\end{array}$Hence, by the result of (a), we have
$\begin{array}{rcl}
\dfrac{1}{3} \pi r^2 \times h & = & 4096\pi \\
\dfrac{1}{3} \pi \times \left(\dfrac{h}{3} \right)^2 \times h & = & 4096\pi \\
h^3 & = & 110\ 592 \\
h & = & 48
\end{array}$Therefore, the depth of water in the vessel is $48\text{ cm}$.
- The capacity of the vessel
$\begin{array}{cl}
= & \dfrac{1}{3} \pi (20)^2 \times 60 \\
= & 8000\pi \text{ cm}^3
\end{array}$The total volume of the metal sphere and the water
$\begin{array}{cl}
= & \dfrac{4}{3} \pi (14)^3 + 4096\pi \\
= & 7754\dfrac{2}{3}\pi \text{ cm}^3 \\
< & 8000\pi \text{ cm}^2 \end{array}$Therefore, the water will not overflow.
2018-I-14
Ans: (a) $4096\pi\text{ cm}^3$ (b) $48\text{ cm}$ (c) No