Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2018-I-17

Posted on 16-06-202114-06-2023 By app.cch No Comments on 2018-I-17
Ans: (a) $31.9\text{ cm}$ (b) (i) $38.0^\circ$ (ii) $71.9^\circ$

  1. Consider $\Delta ABD$.

    $\begin{array}{rcll}
    \angle ADB & = & 180^\circ – 120^\circ – 20^\circ \\
    \angle ADB & = & 40^\circ
    \end{array}$

    By applying sine law to $\Delta ABD$, we have

    $\begin{array}{rcl}
    \dfrac{AB}{\sin \angle ADB} & = & \dfrac{AD}{\sin \angle ABD} \\
    \dfrac{60}{\sin 40^\circ} & = & \dfrac{AD}{\sin20^\circ} \\
    AD & = & 31.925\ 333\ 17\text{ cm}
    \end{array}$

    1. By applying cosine law to $\Delta ABC$, we have

      $\begin{array}{rcl}
      \cos \angle ABC & = & \dfrac{AB^2 + BC^2 – AC^2}{2\times AB \times BC} \\
      \cos \angle ABC & = & \dfrac{AB^2 + AD^2 – AC^2}{2\times AB \times AD} \\
      \cos \angle ABC & = & \dfrac{60^2 + 31.925\ 333\ 17^2 – 40^2}{2\times 60 \times 31.925\ 333\ 17} \\
      \cos \angle ABC & = & 0.788\ 095\ 899 \\
      \angle ABC & = & 37.992\ 075\ 34^\circ
      \end{array}$

    2. Add a point $X$ on $BD$ such that $AX \perp BD$. Add a point $E$ on $CD$ such that $EX \perp BD$.

      Note that the required angle is $\angle AXE$.

      Consider $\Delta ADX$.

      $\begin{array}{rcl}
      \sin \angle ADX & = & \dfrac{AX}{AD} \\
      AX & = & 31.925\ 333\ 17 \times \sin 40^\circ \\
      AX & = & 20.521\ 208\ 6\text{ cm}
      \end{array}$

      Also,

      $\begin{array}{rcl}
      \tan \angle ADX & = & \dfrac{AX}{DX} \\
      DX & = & \dfrac{20.521\ 208\ 6}{\tan 40^\circ} \\
      DX & = & 24.456\ 224\ 07\text{ cm}
      \end{array}$

      Consider $\Delta DEX$.

      $\begin{array}{rcl}
      \tan \angle XDE & = & \dfrac{EX}{DX} \\
      EX & = & 24.456\ 224\ 07 \times \tan 20^\circ \\
      EX & = & 8.901\ 337\ 605\text{ cm}
      \end{array}$

      Also,

      $\begin{array}{rcl}
      \cos \angle EDX & = & \dfrac{DX}{DE} \\
      DE & = & \dfrac{24.456\ 224\ 07}{\cos 20^\circ} \\
      DE & = & 26.025\ 770\ 06\text{ cm}
      \end{array}$

      Consider $\Delta ADE$. Note that $\angle ADE = \angle ABC$.

      $\begin{array}{rcl}
      AE^2 & = & AD^2 + DE^2 – 2 \times AD \times DE \times \cos \angle ADE \\
      AE^2 & = & 31.925\ 333\ 17^2 + 26.025\ 770\ 06^2 – 2 \times 31.925\ 333\ 17 \times 26.025\ 770\ 06 \times \cos 37.992\ 975\ 34^\circ \\
      AE & = & 19.670\ 769\ 9\text{ cm}
      \end{array}$

      Consider $\Delta AXE$.

      $\begin{array}{rcl}
      \cos \angle AXE & = & \dfrac{AX^2 + XE^2 – AE^2}{2\times AX \times XE} \\
      \cos \angle AXE & = & \dfrac{20.521\ 208\ 6^2 + 8.901\ 337\ 605^2 – 19.670\ 769\ 9^2}{2 \times 20.521\ 208\ 6 \times 8.901\ 337\ 605} \\
      \angle AXE & = & 71.914\ 113\ 96^\circ
      \end{array}$

      Therefore, the required angle is $71.9^\circ$.

Same Topic:

Default Thumbnail2016-I-19 Default Thumbnail2017-I-19 Default Thumbnail2018-II-41 Default Thumbnail2019-I-18
2018, HKDSE-MATH, Paper 1 Tags:3D Problems

Post navigation

Previous Post: 2019-II-45
Next Post: 2017-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme