Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2018-I-18

Posted on 16-06-202114-06-2023 By app.cch No Comments on 2018-I-18
Ans: (a) $f(x) = 3x^2 + 24x$ (b) (i) $(-4, -48)$ (ii) $(-4, 75)$ (iii) $P$ is the mid-point of $QR$.

  1. Let $f(x) = k_1 x^2 + k_2x$, where $k_1$ and $k_2$ are non-zero constants.For $f(2) = 60$, we have

    $\begin{array}{rcl}
    k_1 (2)^2 + k_2(2) & = & 60 \\
    2k_1 + k_2 & = & 30 \ \ldots \unicode{x2460}
    \end{array}$

    For $f(3) = 99$, we have

    $\begin{array}{rcl}
    k_1(3)^2 + k_2(3) & = & 99 \\
    3k_1 + k_2 & = & 33 \ \ldots \unicode{x2461}
    \end{array}$

    $\unicode{x2461} – \unicode{x2460}$, we have

    $\begin{array}{rcl}
    k_1 & = & 3
    \end{array}$

    Sub. $k_1 = 3$ into $\unicode{x2460}$, we have

    $\begin{array}{rcl}
    2(3) + k_2 & = & 30 \\
    k_2 & = & 24
    \end{array}$

    Therefore, $f(x) = 3x^2 + 24x$.

    1. By the result of (a), we have$\begin{array}{rcl}
      f(x) & = & 3x^2 + 24x \\
      & = & 3(x^2 + 8x) \\
      & = & 3\left[x^2 + 8x + \left(\dfrac{8}{2}\right)^2 – \left(\dfrac{8}{2}\right)^2\right] \\
      & = & 3(x + 4)^2 – 48
      \end{array}$

      Therefore, the coordinates of $Q$ are $(-4, -48)$.

    2. Note that $y= 27 – f(x)$ means $f(x)$ is reflected about $x$ axis and then translated upwards by $27$ units. Then the $x$ coordinate of $Q$ and $R$ are the same, the $y$ coordinate of $R$$\begin{array}{cl}
      = & 27 – \text{the $y$ coordinate of $Q$} \\
      = & 27 – (-48) \\
      = & 75
      \end{array}$

      Therefore, the coordinates of $R$ are $(-4, 75)$.

    3. Sketch the graph below according to the information of the question.

      Consider $\Delta QRS$.

      $\begin{array}{rcl}
      RS^2 + QS^2 & = & (56-(-4)^2 + (0-75)^2 + (56-(-4))^2 + (0-(-48))^2 \\
      & = & 15129
      \end{array}$

      Also,

      $\begin{array}{rcl}
      RQ^2 & = & (75-(-48))^2 \\
      & = & 15129
      \end{array}$

      Since $RS^2 + QS^2 = RQ^2$, then by the converse of the Pythagoras Theorem, $\Delta QRS$ is a right-angled triangle with $\angle QSR =90^\circ$.

      Since $\angle QSR = 90^\circ$, then by the converse of $\angle$ in the semi-circle, $QR$ is a diameter of the circle.

      Since $P$ is the circumcentre of $\Delta QRS$, then $P$ is the mid-point of $QR$.

Same Topic:

Default Thumbnail2018-II-05 Default Thumbnail2018-II-11 Default Thumbnail2018-II-36 Default Thumbnail2022-I-10
2018, HKDSE-MATH, Paper 1 Tags:Quadratic Equations and Functions, Variations

Post navigation

Previous Post: 2019-II-45
Next Post: 2017-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme