Ans: B
$\begin{array}{cl}
& \dfrac{8^{2n+1}}{4^{3n+1}} \\
= & \dfrac{(2^3)^{2n+1}}{(2^2)^{3n+1}} \\
= & \dfrac{2^{3 \times (2n+1)}}{2^{2 \times (3n+1)}} \\
= & \dfrac{2^{6n+3}}{2^{6n+2}} \\
= & 2^{(6n+3) – (6n+2)} \\
= & 2
\end{array}$
$\begin{array}{cl}
& \dfrac{8^{2n+1}}{4^{3n+1}} \\
= & \dfrac{(2^3)^{2n+1}}{(2^2)^{3n+1}} \\
= & \dfrac{2^{3 \times (2n+1)}}{2^{2 \times (3n+1)}} \\
= & \dfrac{2^{6n+3}}{2^{6n+2}} \\
= & 2^{(6n+3) – (6n+2)} \\
= & 2
\end{array}$