Ans: B
Note that the maximum absolute error of the measurements $=\dfrac{1}{2} \text{ cm}$.
Note that the maximum absolute error of the measurements $=\dfrac{1}{2} \text{ cm}$.
Hence, the upper limit of the area $ABCDEFGH$
$\begin{array}{cl}
= & (4 + 0.5) \times ((6 + 0.5) – (2 – 0.5) \times (2 – 0.5) \\
= & 27 \text{ cm}^2
\end{array}$
Also, the lower limit of the area $ABCDEFGH$
$\begin{array}{cl}
= & (4 – 0.5) \times ((6 – 0.5) – (2 + 0.5) \times (2 + 0.5) \\
= & 13 \text{ cm}^2
\end{array}$
Therefore, $13 < x < 27$.