Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2018-II-19

Posted on 16-06-2021 By app.cch No Comments on 2018-II-19
Ans: D
I is true. In $\Delta CDE$,

$\begin{array}{rcll}
\angle CDE & = & \dfrac{(5-2) \times 180^\circ}{5} & \text{($\angle$ sum of polygon)} \\
\angle CDE & = & 108^\circ
\end{array}$

Also,

$\begin{array}{rcll}
CD & = & ED & \text{(regular pentagon)} \\
\angle DCE & = & \angle DEC & \text{(base $\angle$s, isos. $\Delta$)} \\
\angle DCE & = & \dfrac{1}{2} \times (180^\circ – \angle CDE) & \text{($\angle$ sum of $\Delta$)} \\
\angle DCE & = & \dfrac{1}{2} \times (180^\circ – 108^\circ) \\
\angle DCE & = & 36^\circ
\end{array}$

Consider $\Delta CDE$ and $\Delta DEA$.

$\begin{array}{rcll}
CD & = & DE & \text{(regular pentagon)} \\
DE & = & EA & \text{(regular pentagon)} \\
\angle CDE & = & \angle DEA & \text{(regular pentagon)}
\end{array}$

Therefore, $\Delta CDE \cong \Delta DEA \ \text{(S.A.S.)}$.

Hence, $\angle ADE = \angle ECD = 36^\circ\ \text{(corr. $\angle$s, $\cong \Delta$s)}$.

Consider $\Delta CDF$.

$\begin{array}{rcl}
\angle CDF & = & \angle CDE – \angle EDA \\
\angle CDF & =& 108^\circ – 36^\circ \\
\angle CDF & = & 72^\circ
\end{array}$

Also,

$\begin{array}{rcll}
\angle CFD & = & 180^\circ – \angle DCF – \angle CDF & \text{($\angle$ sum of $\Delta$)} \\
\angle CFD & = & 180^\circ – 36^\circ – 72^\circ \\
\angle CFD & = & 72^\circ
\end{array}$

Since $\angle CDF = \angle CFD$, then $CF = CD\ \text{(sides opp. eq. $\angle$s)}$.

II is true. In $\Delta AFD$ and $\Delta AFE$,

$\begin{array}{rcll}
CD & = & AE & \text{(regular pentagon)} \\
\angle DCF & = & \angle EAF & \text{(corr. $\angle$s, $\cong \Delta$s)} \\
\angle CFD & = & \angle AFE & \text{(vert. opp. $\angle$s)}
\end{array}$

Therefore, $\Delta AFD \cong \Delta AFE\ \text{(A.A.S.)}$.

Hence, $CF = AF\ \text{(corr. sides, $\cong \Delta$s)}$.

In $\Delta ABF$ and $\Delta CBF$,

$\begin{array}{rcll}
AB & = & CB & \text{(regular pentagon)} \\
BF & = & BF & \text{(common side)} \\
AF & = & CF & \text{(proved)} \\
\end{array}$

Therefore, $\Delta ABF \cong \Delta CBF\ \text{(S.S.S.)}$.

III is true. Since $\Delta ABF \cong \Delta CBF$, $\angle BFC = \angle BFA\ \text{corr. $\angle$s, $\cong \Delta$s)}$.

$\begin{array}{rcll}
\angle AFB & = & \dfrac{1}{2} ( 180^\circ – \angle AFE) & \text{(adj. $\angle$s on a st. line)} \\
\angle AFB & = & \dfrac{1}{2} (180^\circ – 72^\circ) \\
\angle AFB & = & 54^\circ
\end{array}$

Therefore, we have

$\begin{array}{rcl}
\angle AFB + \angle EAF & = & 54^\circ + 36^\circ \\
& = & 90^\circ
\end{array}$

Same Topic:

Default Thumbnail2016-II-24 Default Thumbnail2018-I-13 Default Thumbnail2018-II-18 Default Thumbnail2018-II-20
2018, HKDSE-MATH, Paper 2 Tags:Basic Geometry

Post navigation

Previous Post: 2019-II-45
Next Post: 2017-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme