2018-II-22 Posted on 16-06-2021 By app.cch No Comments on 2018-II-22 Ans: BConsider ΔBDE. BD=DE(given)∠DBE=∠DEB(base ∠s, isos. Δ) Then, we have ∠DBE+∠DEB=∠ADB(ext. ∠ of Δ)2∠DEB=∠ADB Consider quadrilateral ABCD. ∠DAC=∠DBE(∠s in the same segment)∠DAC=∠DEB(proved) Consider ΔABD. ∠ABD+∠BAD+∠ADB=180∘(∠ sum of Δ)∠ABD+∠BAC+∠CAD+∠ADB=180∘30∘+66∘+∠DEB+2∠DEB=180∘(proved)3∠DEB=84∘∠DEB=28∘∠CED=28∘ Same Topic: 2018-I-08 2018-II-39 2020-I-18 2021-II-39 2018, HKDSE-MATH, Paper 2 Tags:Properties of Circles