2018-II-39 Posted on 16-06-202115-06-2023 By app.cch No Comments on 2018-II-39 Ans: BJoin AC and AD. Consider ΔABC. ∠ACB=∠BAT(∠s in alt. segment)∠ACB=24∘ Also, ∠CAE=∠ABC(∠s in alt. segment) Since AB=CD(given), ∴AB⏜=CD⏜(eq. chords, eq. arcs)∴∠CAD=∠ACB(arcs and ∠s at ⊙ce in proportion)∠CAD=24∘ Consider ΔADE. ∠ADE=∠ABC(ext. ∠, cyclic quad.)∠DAE=∠CAE–∠CAD∠DAE=∠ABC–24∘ Hence, we have ∠AED+∠ADE+∠DAE=180∘(∠ sum of Δ)72∘+∠ABC+∠ABC–24∘=180∘∠ABC=66∘ Same Topic: 2013-II-41 2014-II-41 2018-I-08 2018-II-22 2018, HKDSE-MATH, Paper 2 Tags:Properties of Circles