- Note that the inter-quartile range of the distribution is $8\text{ s}$. Then we have
$\begin{array}{rcl}
\dfrac{72 + 72}{2} – \dfrac{60 + c + 60 + c}{2} & = & 8 \\
72 – 60 – c & = & 8 \\
c & = & 4
\end{array}$ -
- Note that the mean of the distribution is $69\text{ s}$. Then we have
$\begin{array}{rcl}
\dfrac{50 + a + 60 + 60 + \cdots + 79 + 80 + b}{20} & = & 69 \\
a + b + 1373 & = & 1380 \\
a + b & = & 7 \\
a & = & 7 – b \ \ldots \unicode{x2460}
\end{array}$Note that the range of the distribution exceeds $34\text{ s}$. Then we have
$\begin{array}{rcl}
(80 + b) – (50 + a) & > & 34 \\
b – a & > & 4 \ \ldots \unicode{x2461}
\end{array}$Sub. $\unicode{x2460}$ into $\unicode{x2461}$, we have
$\begin{array}{rcl}
b – (7 – b) & > & 4 \\
2b & > & 11 \\
b & > & \dfrac{11}{2}
\end{array}$Since $a$ and $b$ are non negative integers, then we have $\left\{ \begin{array}{l} a = 0 \\ b = 7 \end{array} \right.$ or $\left\{ \begin{array}{l} a = 1 \\ b = 6 \end{array} \right.$.
- For the least possible standard deviation, we should take $a = 1$ and $b = 6$.
Hence, the least possible standard deviation of the distribution is $7.34\text{ s}$.
- Note that the mean of the distribution is $69\text{ s}$. Then we have
2019-I-12
Ans: (a) $4$ (b) (i) $\left\{ \begin{array}{l} a = 0 \\ b = 7 \end{array} \right.$ or $\left\{ \begin{array}{l} a = 1 \\ b = 6 \end{array} \right.$ (ii) $7.34$