Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2019-I-13

Posted on 16-06-2021 By app.cch No Comments on 2019-I-13
Ans: (a) $25^\circ$ (b) No

  1. Consider quadrilateral $OAED$, we have

    $\begin{array}{rcll}
    \text{reflex } \angle AOD & = & 2 \times \angle AED & \text{($\angle$ at centre twice $\angle$ at $\unicode{x2299}^{ce}$)} \\
    \text{reflex } \angle AOD & = & 2 \times 115^\circ \\
    \text{reflex } \angle AOD & = & 230^\circ
    \end{array}$

    Then, we have

    $\begin{array}{rcll}
    \angle AOD & = & 360^\circ – \text{reflex } \angle AOD & \text{(vert. opp. $\angle$s)} \\
    \angle AOD & = & 360^\circ – 230^\circ \\
    \angle AOD & = & 130^\circ
    \end{array}$

    Since $AC$ is a straight line, we have

    $\begin{array}{rcll}
    \angle COD & = & 180^\circ – \angle AOD & \text{(adj. $\angle$s on a st. line)} \\
    \angle COD & = & 180^\circ – 130^\circ \\
    \angle COD & = & 50^\circ
    \end{array}$

    Hence, we have

    $\begin{array}{rcll}
    \angle CBF & = & \dfrac{1}{2} \times \angle COD & \text{($\angle$ at centre twice $\angle$ at $\unicode{x2299}^{ce}$)} \\
    \angle CBF & = & \dfrac{1}{2} \times 50^\circ \\
    \angle CBF & = & 25^\circ
    \end{array}$

  2. In $\Delta OBD$,

    $\begin{array}{rcll}
    \angle ODB & = & \angle CBD & \text{(alt. $\angle$s, $BC//OD$)} \\
    \angle ODB & = & 25^\circ \\
    OB & = & OD & \text{(radii)} \\
    \angle OBD & = & \angle ODB & \text{(base $\angle$s, isos. $\Delta$)} \\
    \angle OBD & = & 25^\circ \\
    \angle BOD & = & 180^\circ – \angle OBD – \angle ODB & \text{($\angle$ sum of $\Delta$)} \\
    \angle BOD & = & 180^\circ – 25^\circ – 25^\circ \\
    \angle BOD & = & 130^\circ \\
    \angle BOC & = & \angle BOD – \angle COD \\
    \angle BOC & = & 130^\circ – 50^\circ \\
    \angle BOC & = & 80^\circ
    \end{array}$

    Therefore, the perimeter of the sector $OBC$

    $\begin{array}{cl}
    = & 2 \pi \times OB \times \dfrac{\angle BOC}{360^\circ} + 2 OB \\
    = & 2 \pi \times 18 \times \dfrac{80^\circ}{360^\circ} + 2 \times 18\\
    = & 61.132\ 741\ 23 \text{ cm} \\
    > & 60 \text{ cm}
    \end{array}$

    Therefore, the perimeter of the sector $OBC$ is longer than $60\text{ cm}$.

Same Topic:

Default Thumbnail2013-II-41 Default Thumbnail2014-II-41 Default Thumbnail2019-II-21 Default Thumbnail2019-II-39
2019, HKDSE-MATH, Paper 1 Tags:Properties of Circles

Post navigation

Previous Post: 2020-II-45
Next Post: 2018-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme