Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2019-I-17

Posted on 16-06-202114-06-2023 By app.cch No Comments on 2019-I-17
Ans: (b) (i) Angle bisector (ii) $8x-y-60=0$

  1. Sketch $\Delta CDE$ and the inscribed circle of $\Delta CDE$ as shown. Let $I$ be the in-centre of $\Delta CDE$.

    Note that the perimeter $p = CD + DE + CE$.

    Note also that $CD$, $DE$ and $CE$ are tangents to the circle. Therefore, by the theorem of radius $\perp$ tangent, $r$ is the height of $\Delta CDI$, $\Delta DEI$ and $\Delta CEI$. Hence, we have

    $\begin{array}{rcl}
    a & = & \dfrac{1}{2} \times CD \times r + \dfrac{1}{2} \times DE \times r + \dfrac{1}{2} \times CD \times r \\
    2a & = & r(CD + DE + CE) \\
    2a &= & pr \\
    pr & = & 2a
    \end{array}$

    1. Since $P$ is equidistant to $OH$ and $HK$, then $\Gamma$ is the angle bisector of $\angle OHK$.
    2. Let $I(h,k)$ be the in-centre of $\Delta OHK$.

      $\begin{array}{rcl}
      OH & = & \sqrt{9^2 + 12^2} \\
      & = & 15 \\
      HK & = & \sqrt{(9-14)^2 + ( 12 -0)^2} \\
      & = & 13 \\
      OK & = & 14 – 0 \\
      OK & = & 14
      \end{array}$

      The area of $\Delta OHK$

      $\begin{array}{cl}
      = & \dfrac{1}{2} \times OK \times y\text{ coordinates of $H$} \\
      = & \dfrac{1}{2} \times 14 \times 12 \\
      = & 84
      \end{array}$

      Since $OK$ is a tangent to the inscribed circle of $\Delta OHK$, then the $y$ coordinate of $I$ is the radius of the circle. Then by the result of (a), we have

      $\begin{array}{rcl}
      (OH + OK + HK) \times k & = & 2 \times \text{the area of $\Delta OHK$} \\
      k & = & \dfrac{2 \times 84}{13 + 14 + 15} \\
      k & = & 4
      \end{array}$

      Consider the $\angle HOK$.

      $\begin{array}{rcl}
      \tan \angle HOK & = & \dfrac{12 – 0}{9 – 0} \\
      \angle HOK & = & \tan^{-1} \dfrac{4}{3}
      \end{array}$

      Consider the $\angle IOK$.

      $\begin{array}{rcl}
      \angle IOK & = & \dfrac{1}{2} \times \angle HOK \\
      \tan \angle IOK & = & \tan \dfrac{1}{2} \times \angle HOK \\
      \dfrac{4 – 0}{h – 0} & = & \tan \left(\dfrac{1}{2} \times \tan^{-1} \dfrac{4}{3}\right) \\
      \dfrac{4}{h} & = & \dfrac{1}{2} \\
      h & = & 8
      \end{array}$

      Therefore, the equation of $\Gamma$ is

      $\begin{array}{rcl}
      \dfrac{y – 12}{x – 9} & = & \dfrac{4 – 12}{8 – 9} \\
      y – 12 & = & 8x – 72 \\
      8x – y – 60 & = & 0
      \end{array}$

Same Topic:

Default Thumbnail2013-II-24 Default Thumbnail2014-II-24 Default Thumbnail2015-II-24 Default Thumbnail2019-II-26
2019, HKDSE-MATH, Paper 1 Tags:Locus

Post navigation

Previous Post: 2020-II-45
Next Post: 2018-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme