Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2019-I-19

Posted on 16-06-202112-06-2023 By app.cch No Comments on 2019-I-19
Ans: (b) (i) $(3k-1, 28-9k)$ (ii) $3$ (iii) No

  1. $\begin{array}{rcl}
    f(4) & = & \dfrac{1}{1 + k} [4^2 + (6k – 2) \times 4 + (9k + 25) ] \\
    & = & \dfrac{1}{1 + k}( 33k + 33) \\
    & = & \dfrac{33(1+k)}{1+k} \\
    & = & 33
    \end{array}$

    Therefore, the graph of $y=f(x)$ passes through $F$.

    1. $\begin{array}{rcl}
      g(x) & = & f(-x) + 4 \\
      & = & \dfrac{1}{1+k}[(-x)^2 + (6k -2)(-x) +(9k +25)] + 4 \\
      & = & \dfrac{1}{1 + k}[x^2 – (6k – 2)x + (\dfrac{6k-2}{2})^2 – (\dfrac{6k-2}{2})^2 + (9k +25)] + 4 \\
      & = & \dfrac{1}{1 + k}[(x – (3k – 1))^2 – (3k -1)^2 + (9k + 25)] + 4 \\
      & = & \dfrac{1}{1+k} [x – (3k – 1)]^2 + \dfrac{-(3k – 1)^2 +(9k+25)+ 4(1+k)}{1+k} \\
      & = & \dfrac{1}{1+k}[x – (3k – 1)]^2 + \dfrac{-9k^2 + 6k – 1 + 9k + 25 + 4 + 4k}{1+k} \\
      & = & \dfrac{1}{1+k}[x – (3k – 1)]^2 + \dfrac{-9k^2 + 19k + 28}{1+k} \\
      & = & \dfrac{1}{1+k}[x – (3k – 1)]^2 + \dfrac{(28-9k)(1+k)}{1+k} \\
      & = & \dfrac{1}{1+k}[x – (3k – 1)]^2 + (28 – 9k)
      \end{array}$

      Therefore, the coordinates of $U$ are $(3k-1, 28-9k)$.

    2. For the area of the circle passing through $F$, $O$ and $U$ is the least, then $FO$ must be a diameter of the circle.Therefore, $\angle FUO = 90^\circ$ ($\angle$ in semi-circle).

      For $\angle FUO = 90^\circ$, we have

      $\begin{array}{rcl}
      m_{FU} \times m_{UO} & = & -1 \\
      \dfrac{33 – (28 – 9k)}{4 – (3k-1)} \times \dfrac{(28 – 9k) – 0}{(3k – 1) – 0} & = & -1 \\
      (5 + 9k)(28 – 9k) & = & -(5-3k)(3k – 1) \\
      140 + 207k – 81 k^2 & = & 9k^2 -18k + 5 \\
      90k^2 – 225k – 135 & = & 0 \\
      2k^2 -5k -3 & = & 0 \\
      (k – 3)(2k + 1) & = & 0
      \end{array}$

      Therefore, $k=3$ or $k = \dfrac{-1}{2}$ (rejected).

    3. Note that for any positive value of $k$, $y=f(x)$ passes through $F(4,33)$ and $y=g(x)$ passes through $G$. Hence, $G$ is the image of reflecting $F$ with respect to the $y$-axis and then translating upwards by $4$ units. Then, we have$\begin{array}{rcl}
      G & = & (-4, 33 + 4) \\
      G & = & (-4, 37)
      \end{array}$

      For the area of the circle passing through $F$, $O$ and $V$ is the least, $FO$ must be a diameter. Then $\angle FVO = 90^\circ$ ($\angle$ in semi-circle).

      Consider $\angle FGO$.

      $\begin{array}{cl}
      & m_{FG} \times m_{GO} \\
      = & \dfrac{33 – 37}{4 -(- 4)} \times \dfrac{37 – 0}{-4 – 0} \\
      = & \dfrac{37}{8} \\
      \neq & -1
      \end{array}$

      Therefore, $\angle FGO \neq 90^\circ$.

      Hence, $\angle FVO + \angle FGO \neq 180^\circ$.

      Therefore, $F$, $G$, $O$ and $V$ are not concyclic.

Same Topic:

Default Thumbnail2016-II-08 Default Thumbnail2017-II-09 Default Thumbnail2019-I-03 Default Thumbnail2019-II-10
2019, HKDSE-MATH, Paper 1 Tags:Quadratic Equations and Functions

Post navigation

Previous Post: 2020-II-45
Next Post: 2018-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme