2020-I-08 Posted on 16-06-2021 By app.cch No Comments on 2020-I-08 Ans: (a) 12∘ (b) 168∘–θ In ΔABE, AB=BE(given)∠AEB=∠BAE(base ∠s, isos. Δ)∠AEB=30∘ Since BD//CE, we have ∠AEC=∠ADB(corr. ∠s, BD//CE)∠AEC=42∘ Therefore, we have ∠BEC=∠AEC–∠AEB∠BEC=42∘–30∘∠BEC=12∘ Since BD//CE, we have ∠DCE=∠BDC(alt. ∠s, BD//CE)∠DCE=θ In ΔCEF, ∠CFE=180∘–∠CEF–∠ECF(∠ sum of Δ)∠CFE=180∘–12∘–θ∠CFE=168∘–θ Same Topic: 2018-II-18 2019-II-18 2020-II-19 2020-II-20 2020, HKDSE-MATH, Paper 1 Tags:Basic Geometry