- In $\Delta UTV$ and $\Delta WTU$,
$\begin{array}{rcll}
\angle UTV & = & \angle WTU & \text{(common $\angle$)} \\
\angle VUT & = & \angle UWT & \text{($\angle$s in alt. segment)} \\
\angle UVT & = & 180^\circ – \angle UTV – \angle VUT & \text{($\angle$ sum of $\Delta$)} \\
& = & 180^\circ – \angle WTU – \angle UWT & \text{(proved)} \\
& = & \angle WUT & \text{($\angle$ sum of $\Delta$)}
\end{array}$Therefore, $\Delta UTV \sim \Delta WTU\ \text{(A.A.A.)}$.
-
- By the result of (a), we have
$\begin{array}{rcll}
\dfrac{TU}{TW} & = & \dfrac{TV}{TU} & \text{(corr. sides, $\sim \Delta$s)} \\
\dfrac{TU}{WV + TV} & = & \dfrac{TV}{TU} \\
\dfrac{780}{WV + 325} & = & \dfrac{325}{780} \\
608400 & = & 325 WV + 105625 \\
325 WV & = & 502775 \\
WV & = & 1547 \text{ cm}
\end{array}$Therefore, the circumference of $C$
$\begin{array}{cl}
= & WV \times \pi \\
= & 1547 \pi \text{ cm}
\end{array}$ - Since $VW$ is a diameter of $C$, $\angle VUW = 90^\circ$ $\text{($\angle$ in semi-circle)}$. Hence, by applying the Pythagoras Theorem to $\Delta UVW$, we have
$\begin{array}{rcl}
UV^2 + UW^2 & = & WV^2 \ \ldots \unicode{x2460}
\end{array}$Also by the result of (a), we have
$\begin{array}{rcll}
\dfrac{UV}{WU} & = & \dfrac{TV}{TU} & \text{(corr. sides, $\sim \Delta$s)} \\
\dfrac{UV}{WU} & = & \dfrac{325}{780} \\
UV & = & \dfrac{5}{12} WU \ \ldots \unicode{x2461}
\end{array}$Sub. $\unicode{x2461}$ into $\unicode{x2460}$, we have
$\begin{array}{rcl}
(\dfrac{5}{12}WU)^2 + WU^2 & = & WV^2 \\
\dfrac{25}{144} WU^2 + WU^2 & = & (1547)^2 \\
WU & = & 1428 \text{ cm}
\end{array}$Sub. $WU = 1428$ into $\unicode{x2461}$, we have
$\begin{array}{rcl}
UV & = & \dfrac{25}{144} \times 1428 \\
& = & 595\text{ cm}
\end{array}$Hence, the perimeter of $\Delta UVW$
$\begin{array}{cl}
= & 1547 + 595 + 1425 \\
= & 3570 \text{ cm} \\
= & 35.5\text{ m} \\
> & 35 \text{ m}
\end{array}$Therefore, I agree with the claim.
- By the result of (a), we have
2020-I-18
Ans: (b) (i) $1547\pi\text{ cm}$ (ii) Yes