Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2020-I-19

Posted on 16-06-202114-06-2023 By app.cch No Comments on 2020-I-19
Ans: (a) $16.9\text{ cm}$ (b) $1400\text{ cm}^2$ (c) (i) $15.9\text{ cm}$ (ii) Yes

  1. Join $PR$.

    By applying sine law to $\Delta PQR$, we have

    $\begin{array}{rcl}
    \dfrac{PR}{\sin \angle PQR} & = & \dfrac{PQ}{\sin \angle PRQ} \\
    \dfrac{PR}{\sin 30^\circ} & = & \dfrac{60}{\sin 55^\circ} \\
    PR & = & 36.623\ 237\ 66^\circ
    \end{array}$

    Also,

    $\begin{array}{rcll}
    \angle QPR & = & 180^\circ – 30^\circ – 55^\circ & \text{($\angle$ sum of $\Delta$)} \\
    \angle QPR & = & 95^\circ
    \end{array}$

    By applying cosine law to $\Delta PRS$, we have

    $\begin{array}{rcl}
    RS^2 & = & PS^2 + PR^2 – 2\times PS \times PR \times \cos \angle RPS \\
    RS^2 & = & 40^2 + 36.623\ 237\ 66^2 – 2 \times 40 \times 36.623\ 237\ 66 \times \cos (120^\circ – 95^\circ) \\
    RS & = & 16.908\ 799\ 44\text{ cm}
    \end{array}$

  2. The area of the paper card

    $\begin{array}{cl}
    = & \dfrac{1}{2} \times PQ \times PR \times \sin \angle QPR + \dfrac{1}{2} \times PR \times PS \times \sin \angle RPS \\
    = & \dfrac{1}{2} \times 60 \times 36.623\ 237\ 66 \times \sin 95^\circ + \dfrac{1}{2} \times 36.623\ 237\ 66 \times 40 \times \sin 25^\circ \\
    = & 1404.069\ 236 \text{ cm}^2
    \end{array}$

    1. Let $P’$ be the projection of $P$ on the horizontal ground and $M$ be the foot of the perpendicular from $P$ to $QR$.

      Consider $\Delta PMQ$.

      $\begin{array}{rcl}
      \sin \angle PQM & = & \dfrac{PM}{PQ} \\
      \sin 30^\circ & = & \dfrac{PM}{60} \\
      PM & = & 30\text{ cm}
      \end{array}$

      Since the angle between the paper card and the horizontal ground is $32^\circ$, then $\angle PMP’ = 32^\circ$.

      $\begin{array}{rcl}
      \sin \angle PMP’ & = & \dfrac{PP’}{PM} \\
      \sin 32^\circ & = & \dfrac{PP’}{30} \\
      PP’ & = & 15.897\ 577\ 93 \text{ cm}
      \end{array}$

      Therefore, the shortest distance from $P$ to the horizontal ground is $15.9\text{ cm}$.

    2. Let $S’$ be the projection of $S$ on the horizontal ground and $N$ be the intersection of $PS$ produced and $P’S’$ produced.

      Consider $\Delta PQN$.

      $\begin{array}{rcll}
      \angle PNQ & = & 180^\circ – 30^\circ – 120^\circ & \text{($\angle$ sum of $\Delta$)} \\
      \angle PNQ & = & 30^\circ \\
      \therefore PQ & = & PN & \text{(base $\angle$s, isos. $\Delta$)}
      \end{array}$

      Note that $\Delta PNP’ \sim SNS’$. Then we have

      $\begin{array}{rcll}
      \dfrac{SS’}{PP’} & = & \dfrac{SN}{PN} & \text{(corr. sides, $\sim \Delta$s)} \\
      \dfrac{SS’}{PP’} & = & \dfrac{PN – PS}{PN} \\
      \dfrac{SS’}{15.897\ 577\ 93} & = & \dfrac{60 – 40}{60} \\
      SS’ & = & 5.299\ 192\ 642 \text{ cm}
      \end{array}$

      Note that the angle between $RS$ and the horizontal ground is $\angle SRS’$. Consider $\Delta SRS’$.

      $\begin{array}{rcl}
      \sin \angle SRS’ & = & \dfrac{SS’}{RS} \\
      \sin \angle SRS’ & = & \dfrac{5.299\ 192\ 642}{16.908\ 799\ 44} \\
      \angle SRS’ & = & 18.264\ 160\ 68^\circ \\
      \angle SRS’ & \le & 20^\circ
      \end{array}$

      Therefore, the claim is correct.

Same Topic:

Default Thumbnail2014-I-17 Default Thumbnail2019-I-18 Default Thumbnail2020-II-38 Default Thumbnail2022-II-40
2020, HKDSE-MATH, Paper 1 Tags:3D Problems

Post navigation

Previous Post: 2020-I-01
Next Post: 2019-I-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme