Ans: (b) (i) Yes (ii) $270\text{ cm}^2$
- In $\Delta ACE$ and $\Delta DBE$,
$\begin{array}{rcll}
\angle CAE & = & \angle BDE & \text{(given)} \\
\angle AEC & = & \angle DEB & \text{(common $\angle$s)} \\
\end{array}$$\therefore \Delta ACE \sim \Delta DBE$ (AA).
-
-
$\begin{array}{rcl}
AC^2 + AE^2 & = & 25^2 + 60^2 \\
& = & 4225
\end{array}$$\begin{array}{rcl}
CE^2 & = & 65^2 \\
& = & 4225
\end{array}$$\because AC^2+AE^2=CE^2$,
$\therefore \Delta ACE$ is a right-angled triangle. (converse of Pyth Theorem).
- Since $\Delta ACE \sim \Delta DBE$ and $\Delta ACE$ is a right-angled triangle, then $\Delta DBE$ is also a right-angled triangle.
$\begin{array}{rcll}
\dfrac{DE}{AE} & = & \dfrac{BD}{CA} & \text{(corr. sides, $\sim\Delta$s)} \\
\dfrac{DE}{60} & = & \dfrac{15}{25} \\
DE & = & 36 \text{ cm}
\end{array}$$\therefore$ the area of $\Delta BDE$
$\begin{array}{cl}
= & \dfrac{1}{2} \times BD \times DE \\
= & \dfrac{1}{2} \times 15 \times 36 \\
= & 270\text{ cm}^2
\end{array}$
-