- Let $f(x) = k_1 +k_2(x+4)^2$, where $k_1, k_2 \neq 0$.
$\begin{array}{rcl}
f(-3) & = & 0 \\
k_1 + k_2(-3+4)^2 & = & 0 \\
k_1 + k_2 & = & 0 \ \ldots\unicode{x2460}
\end{array}$$\begin{array}{rcl}
f(2) & = & 105 \\
k_1 + k_2(2+4)^2 & = & 105 \\
k_1 + 36k_2 & = & 105 \ \ldots\unicode{x2461}
\end{array}$$\unicode{x2461} – \unicode{x2460}$, we have
$\begin{array}{rcl}
35k_2 & = & 105 \\
k_2 & = & 3
\end{array}$Sub $k_2=3$ into $\unicode{x2460}$, we have
$\begin{array}{rcl}
k_1 + 3 & = & 0 \\
k_1 & = & -3
\end{array}$$\therefore f(x) = -3+3(x+4)^2$.
$\begin{array}{rcl}
f(0) & = & -3 + 3(0+4)^2 \\
& = & 45
\end{array}$ -
- For the $y$-intercept of $G$, sub. $x=0$ into the equation of $G$, we have
$\begin{array}{rcl}
y & = & f(0) + 3 \\
& = & 45 + 3 \\
& = & 48
\end{array}$$\therefore$ the $y$-intercept of $G$ is $48$.
- For the $x$-intercept of $G$, sub. $y=0$ into the equation of $G$, we have
$\begin{array}{rcl}
f(x) + 3 & = & 0 \\
-3 + 3(x+4)^2 + 3 & = & 0 \\
(x+4)^2& = & 0 \\
\end{array}$$\therefore x=4$ (repeated).
$\therefore$ the $x$-intercept of $G$ is $4$.
- For the $y$-intercept of $G$, sub. $x=0$ into the equation of $G$, we have
2021-I-10
Ans: (a) $45$ (b) (i) $48$ (ii) $-4$