Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2021-I-18

Posted on 27-06-202327-06-2023 By app.cch No Comments on 2021-I-18
Ans: (a) $36.7\text{ cm}$ (b) (i) $35.5^\circ$ (ii) Yes

  1. Sketch a figure according to the question. Add a point $X$ on $AD$ such that $AB\text{//}XC$.

    Since $AB\text{//}XC$ and $BC\text{//}AX$, then $CX=45\text{ cm}$ and $\angle CXD=50^\circ$.

    In $\Delta CDX$,

    $\begin{array}{rcl}
    \dfrac{CD}{\sin \angle CXD} & = & \dfrac{CX}{\sin \angle CDX} \\
    \dfrac{CD}{\sin 50^\circ} & = & \dfrac{45}{\sin 70^\circ} \\
    CD & = & \dfrac{ 45 \sin 50^\circ}{\sin 70^\circ} \\
    CD & = & 36.684\ 336\ 11\text{ cm}
    \end{array}$

    1. Sketch a figure according to the question.

      Consider $\Delta ABE$ in trapezium $ABCD$,

      $\begin{array}{rcl}
      AE & = & AB \cos 50^\circ \\
      AE & = & 45 \cos 50^\circ \\
      AE & = & 28.925\ 442\ 44 \text{ cm}
      \end{array}$

      Consider $DE$ in trapezium $ABCD$,

      $\begin{array}{rcl}
      DE & = & BC +CD \cos 70^\circ \\
      DE & = & 40 +36.684\ 336\ 11 \cos 70^\circ \\
      DE & = & 52.546\ 781\ 89\text{ cm}
      \end{array}$

      Consider $\Delta ADE$ in the 3D figure,

      $\begin{array}{rcl}
      AD & = & \sqrt{AE^2+DE^2} \\
      AD & = & \sqrt{(28.925\ 442\ 44)^2 + (52.546\ 781\ 89)^2} \\
      AD & = & 59.982\ 043\ 21\text{ cm}
      \end{array}$

      Consider $\Delta ABC$ in the 3D figure. $\angle ABC =90^\circ$. Hence, we have

      $\begin{array}{rcl}
      AC & = & \sqrt{AB^2 +BC^2} \\
      AC & = & \sqrt{45^2 +40^2} \\
      AC & = & 60.207\ 972\ 89\text{ cm}
      \end{array}$

      Consider $\Delta ACD$ in the 3D figure,

      $\begin{array}{rcl}
      \cos \angle CAD & = & \dfrac{AC^2 +AD^2 -CD^2}{2(AC)(AD)} \\
      \cos \angle CAD & = & \dfrac{(60.207\ 972\ 89)^2 +(59.982\ 043\ 21)^2 -(36.684\ 336\ 11)^2}{2(60.207\ 972\ 89)(59.982\ 043\ 21)^2} \\
      \angle CAD & = & 35.542\ 107\ 89^\circ
      \end{array}$

    2. Add a point $F$ on $CD$ such that $AD \perp CD$ and $EF\perp CD$.

      Note that the angle between the plane $ACD$ and the plane $BCDE$ is $\angle AFE$.

      Consider $\Delta DEF$ in trapezium $ABCD$,

      $\begin{array}{rcl}
      EF & = & DE \sin \angle CDE \\
      EF & = & 52.546\ 781\ 89 \sin 70^\circ \\
      EF & = & 49.377\ 823\ 19\text{ cm}
      \end{array}$

      Consider $\Delta AEF$ in the 3D figure,

      $\begin{array}{rcl}
      \tan \angle AFE & = & \dfrac{AE}{EF} \\
      \tan \angle AFE & = & \dfrac{ 28.925\ 442\ 44}{49.377\ 823\ 19} \\
      \angle AFE & = & 30.361\ 697\ 31^\circ \\
      \angle AFE & > & 30^\circ
      \end{array}$

      $\therefore$ the angle between the plane $ACD$ and the plane $BCDE$ exceeds $30^\circ$.

Same Topic:

Default Thumbnail2015-I-19 Default Thumbnail2017-II-39 Default Thumbnail2019-II-40 Default Thumbnail2022-I-18
2021, HKDSE-MATH, Paper 1 Tags:3D Problems

Post navigation

Previous Post: Calculator Programmes
Next Post: 2021-I-19

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme