Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2021-I-19

Posted on 27-06-202330-06-2023 By app.cch No Comments on 2021-I-19
Ans: (a) $(6k+7,5k+4)$ (b) $(7-6k,5k+4)$ (c) (i) $4x-3y-9k-16=0$ (ii) $(x-7)^2+(y-2k-4)^2=9k^2$ (iii) Yes

  1. $\begin{array}{rcl}
    f(x) & = & x^2 -12kx -14x +36k^2 +89k +53 \\
    & = & x^2 -(12k +14)x +36k^2 +89k +53 \\
    & = & x^2 -(12k +14)x +(6k +7)^2 -(6k +7)^2 +36k^2 +89k +53 \\
    & = & [x -(6k+7)]^2 -36k^2 -84k -49 +36k^2 +89k +53 \\
    & = & [x -(6k+7)]^2 +5k +4
    \end{array}$

    $\therefore$ the coordinates of $Q$ are $(6k +7, 5k +4)$.

  2. Note that $y=f(14-x)=f(-(x-14))$. Hence, $y=f(x)$ is first translated $14$ units to the right, then reflected about the $y$-axis.

    Hence, the coordinates of the vertex will first translated to $(6k +7 -14, 5k +4) = (6k -7, 5k +4)$, and then reflect to $(-(6k-7), 5k+4) = (7-6k, 5k+4)$. Therefore, the coordinates of $R$ are $(7 -6k, 5k +4)$.

  3. Sketch the graph according to the question. (For sketching the graph, here we assume $k=2$.)

    1. The equation of the straight line passes through $Q$ and $S$ is

      $\begin{array}{rcl}
      \dfrac{y-(4-3k)}{x-7} & = & \dfrac{5k +4 -(4-3k)}{6k +7 -7} \\
      \dfrac{y +3k -4}{x -7} & = & \dfrac{4}{3} \\
      3y +9k -12 & = & 4x -28 \\
      4x -3y -9k -16 & = & 0
      \end{array}$

    2. Note that the $y$-coordinates of $Q$ and $R$ are the same. Therefore $QR$ is a horizontal line.

      Consider the $x$-coordinates of $Q$, $R$ and $S$.

      $\begin{array}{rcl}
      \dfrac{1}{2} (\text{$x$-coordinate of $Q$} +\text{$x$-coordinate of $R$}) & = & \dfrac{1}{2}(6k +7 + 7 -6k) \\
      & = &7 \\
      & = & \text{$x$-coordinate of $S$}
      \end{array}$

      Therefore, $\Delta QRS$ is an isosceles triangle with $SQ = SR$.

      Let $r$ be the radius of the inscribed circle $C$ of $\Delta QRS$. Then the centre of $C$ is $(7, 5k +4 -r)$.

      Hence, the equation of $C$ is $(x -7)^2 +(y -5k -4 +r)^2 = r^2$.

      $\left\{ \begin{array}{l}
      (x -7)^2 +(y -5k -4 +r)^2 = r^2 & \ldots \unicode{x2460} \\
      4x -3y -9k -16 = 0 & \ldots \unicode{x2461}
      \end{array}\right.$

      From $\unicode{x2461}$, we have

      $\begin{array}{rcl}
      4x -3y -9k -16 & = & 0 \\
      y & = & \dfrac{4x -16 -9k}{3} \ldots \unicode{x2462}
      \end{array}$

      Sub. $\unicode{x2462}$ into $\unicode{x2460}$, we have

      $\begin{array}{rcl}
      (x -7)^2 + \left(\dfrac{4x -16 -9k}{3} -5k -4 +r \right)^2 & = & r^2 \\
      x^2 -14x +49 +\dfrac{1}{9}(4x -16 -9k -15k -12 +3r)^2 -r^2 & = & 0 \\
      9x^2 -126x +441 +(4x -28 -24k +3r)^2 -9r^2 & = & 0 \\
      9x^2 -126x +441 +16x^2 +784 +576k^2 +9r^2 -224x \ \ \ \ \ & & \\
      -192kx +24rx +1344k -168r -144kr -9r^2 & = & 0 \\
      25x^2 +(24r-192k-350)x +(576k^2 -144kr +1344k -168r +1225) & = & 0 \\
      \end{array}$

      Since $QS$ is the tangent to $C$ at $T$, then we have

      $\begin{array}{rcl}
      \Delta & = & 0 \\
      (24r -192k -350)^2 -4(25)(576k^2 -144kr +1344k -168r +1225) & = & 0 \\
      576r^2 +36864k^2+ 122500 -9216kr -16800r +134400k \ \ \ \ \ & & \\
      -57600k^2 +14400kr -134400k +16800r -122500 & = & 0\\
      576r^2 -5184kr +36864k^2 & = & 0 \\
      r^2 +9kr -36k^2 & = & 0 \\
      (r-3k)(r+12k) & = & 0
      \end{array}$

      $\therefore r=3k$ or $r=-12k$ (rejected).

      Hence, the equation of $C$ is

      $\begin{array}{rcl}
      (x -7)^2 +(y-5k-4+3k)^2 & = & (3k)^2 \\
      (x-7)^2 +(y -2k -4)^2 & = & 9k^2
      \end{array}$

    3. For $ST\text{//}VU$,

      $\begin{array}{rcl}
      m_{ST} & = & m_{VU} \\
      m_{QS} & = & m_{VU} \\
      \dfrac{4}{3} & = & \dfrac{-14 -(2k+4)}{-29 -7} \\
      -144 & = & -54 -6k\\
      k & = & 15
      \end{array}$

      Therefore, $ST\text{//}VU$ when $k=15$.

      For $k=15$, the graph becomes

      Also, the coordinates of $S$ and $U$ are $(7,-41)$ and $(7,34)$ respectively.

      The slope of $SV$

      $\begin{array}{cl}
      = & \dfrac{-14+41}{-29 -7} \\
      = & \dfrac{-3}{4}
      \end{array}$

      Since $m_{SV} \times m_{TS}=-1$, then $SV\perp TS$.

      Since $ST$ is the tangent to $C$ at $T$ and $UT$ is a radius, then $UT \perp ST$.

      Since $SV\perp TS$ and $UT \perp ST$, then $SV\text{//}TU$.

      Hence for $k=15$, $ST\text{//}VU$ and $SV\text{//}TU$. Therefore $STUV$ is a parallelogram.

      Since $STUV$ is a parallelogram and $UT\perp ST$ (i.e. $\angle UTS =90^\circ$), then $STUV$ is a rectangle.

      Thus, it is possible that $STUV$ is a rectangle.

Same Topic:

Default Thumbnail2021-I-07 Default Thumbnail2021-I-13 Default Thumbnail2021-II-27 Default Thumbnail2021-II-40
2021, HKDSE-MATH, Paper 1 Tags:Coordinates, Equations of Circle, Quadratic Equations and Functions

Post navigation

Previous Post: 2021-I-18
Next Post: 2021-II-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme