Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2021-II-22

Posted on 29-06-2023 By app.cch No Comments on 2021-II-22
Ans: A

$\begin{array}{rcll}
\angle ACD & = & 180^\circ -\angle AED & \text{(opp. $\angle$s, cyclic quad.)} \\
\angle ACD & = & 180^\circ -96^\circ \\
\angle ACD & = & 84^\circ
\end{array}$

Join $AB$.

$\begin{array}{rcll}
AC & = & BD & \text{(given)} \\
\overparen{AC} & = & \overparen{BD} & \text{(eq. chords, eq. arcs)} \\
\angle ADC & = & \angle BAD & \text{(arcs prop. to $\angle$s at $\unicode{x2299}^{ce}$)} \\
\because \angle CDB & = & \angle BAC & \text{($\angle$s in the same segment)} \\
\therefore \angle ADB & = & \angle CAD
\end{array}$

In $\Delta ACD$,

$\begin{array}{rcll}
\angle CAD +\angle ADB +\angle BDC +\angle ACD & = & 180^\circ & \text{($\angle$ sum of $\Delta$)} \\
\angle CAD +\angle CAD +14^\circ +84^\circ & = & 180^\circ \\
\angle CAD & = & 41^\circ
\end{array}$

Same Topic:

Default Thumbnail2019-I-13 Default Thumbnail2019-II-39 Default Thumbnail2020-II-39 Default Thumbnail2021-II-39
2021, HKDSE-MATH, Paper 2 Tags:Properties of Circles

Post navigation

Previous Post: 2021-II-21
Next Post: 2021-II-23

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme