Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2021-M2-09

Posted on 02-09-2023 By app.cch No Comments on 2021-M2-09
Ans: (a) (i) $\sec \theta$ (ii) $\ln( \sec\theta +\tan \theta) +C$, $\dfrac{1}{2} \sec\theta \tan \theta +\dfrac{1}{2} \ln (\sec\theta +\tan\theta) +C$ (c) $\dfrac{\sqrt{2}}{2} -\dfrac{1}{2} (\ln (\sqrt{2}+1)$

  1. This is out of syllabus after 2022.
    1. $\begin{array}{cl}
      & \dfrac{d}{d\theta} \ln (\sec\theta+\tan\theta) \\
      = & \dfrac{1}{\sec\theta+\tan\theta} \times (\sec\theta\tan\theta+\sec^2\theta) \\
      = & \dfrac{\sec\theta(\tan\theta+\sec\theta)}{\sec\theta+\tan\theta} \\\
      = & \sec\theta
      \end{array}$

    2. By the result of (a)(i), we have

      $\begin{array}{rcl}
      \sec\theta & = & \dfrac{d}{d\theta} \ln (\sec\theta+\tan\theta) \\
      \dint \sec\theta d\theta & = & \ln(\sec\theta+\tan\theta)+C
      \end{array}$

      Hence, we have

      $\begin{array}{rcl}
      \dint \sec^3\theta d\theta & = & \dint \sec \theta \sec^2\theta d\theta \\
      \dint \sec^3\theta d\theta & = & \dint \sec \theta d\tan\theta \\
      \dint \sec^3\theta d\theta & = &\sec\theta\tan\theta-\dint\tan\theta d\sec\theta \text{ , by integration by parts.}\\
      \dint \sec^3\theta d\theta & = & \sec\theta\tan\theta -\dint \tan\theta \times \sec\theta\tan\theta d \theta \\
      \dint \sec^3\theta d\theta & = & \sec\theta\tan\theta-\dint \tan^2\theta \sec\theta d\theta \\
      \dint \sec^3\theta d\theta & = & \sec\theta\tan\theta -\dint (\sec^2\theta -1)\sec\theta d\theta \\
      \dint \sec^3\theta d\theta & = & \sec\theta\tan\theta-\dint (\sec^3\theta -\sec\theta )d\theta \\
      \dint \sec^3\theta d\theta & = & \sec\theta\tan\theta-\dint \sec^3\theta d\theta +\dint\sec\theta d\theta \\
      2\dint \sec^3\theta d\theta & = & \sec\theta\tan\theta+\dint \sec\theta d\theta \\
      2\dint \sec^3\theta d\theta & = & \sec\theta\tan\theta+\ln(\sec\theta+\tan\theta)+C \\
      \dint \sec^3\theta d\theta & = & \dfrac{1}{2}\sec\theta\tan\theta+\dfrac{1}{2}\ln(\sec\theta+\tan\theta)+\dfrac{C}{2}
      \end{array}$

  2. Let $u=-x$. Then $du=-dx$.

    When $x=-a$, $u=a$.

    When $x=a$, $u=-a$.

    $\begin{array}{cl}
    & \dint_{-a}^a g(x)h(x) dx \\
    = & \dint_a^{-a}g(-u)h(-u) (-du) \\
    = & \dint_{-a}^a g(-u)h(-u)du \\
    = & \dint_{-a}^a g(-x)h(-x) dx \text{ , for $u$ is a dummy variable.}\\
    = & \dint_{-a}^a g(-x)h(x) dx \text{ , $\because h(x)=h(-x)$ for all $x\in\mathbb{R}$.}
    \end{array}$

    Since $h(x)=h(-x)$ for all $x\in\mathbb{R}$, then $h(x)$ is an even function. Hence, we have

    $\begin{array}{cl}
    & \dint_0^a h(x) dx \\
    = & \dfrac{1}{2} \dint_{-a}^a h(x) dx \\
    = & \dfrac{1}{2} \dint_{-a}^a [g(x)+g(-x)] h(x) dx \text{ , $g(x)+g(-x)=1$ for all $x\in\mathbb{R}$.} \\
    = & \dfrac{1}{2}\left(\dint_{-a}^ag(x)h(x) dx +\dint_{-a}^a g(-x)h(x)dx \right) \\
    = & \dfrac{1}{2}\left(\dint_{-a}^a g(x)h(x)dx + \dint_{-a}^a g(x)h(x) dx\right) \text{ , proved above.} \\
    = & \dfrac{1}{2} \times 2 \dint_{-a}^a g(x)h(x) dx \\
    = & \dint_{-a}^a g(x)h(x) dx
    \end{array}$

  3. Let $g(x) =\dfrac{3^x}{3^x+3^{-x}}$ and $h(x)=\dfrac{x^2}{\sqrt{x^2+1}}$ for all $x\in\mathbb{R}$.

    Checking:

    $\begin{array}{cl}
    & g(x) + g(-x) \\
    = & \dfrac{3^x}{3^x+3^{-x}}+\dfrac{3^{-x}}{3^{-x}+3^{-(-x)}} \\
    = & \dfrac{3^x}{3^x+3^{-x}}+\dfrac{3^{-x}}{3^{-x}+3^{x}} \\
    = & \dfrac{3^x+3^{-x}}{3^x+3^{-x}} \\
    = & 1
    \end{array}$

    Also,

    $\begin{array}{cl}
    & h(-x) \\
    = & \dfrac{(-x)^2}{\sqrt{(-x)^2+1}} \\
    = & \dfrac{x^2}{\sqrt{x^2+1}} \\
    = & h(x)
    \end{array}$

    Hence, we can apply the result of (b) in part (c). For $a=1$, we have

    $\begin{array}{cl}
    & \dint_{-1}^1 \dfrac{3^x x^2}{(3^x+3^{-x})\sqrt{x^2+1}}dx \\
    = & \dint_{-1}^1 g(x)h(x) dx \\
    = & \dint_0^1 h(x)dx \text{ , by the result of (b).} \\
    = & \dint_0^1\dfrac{x^2}{\sqrt{x^2+1}}dx
    \end{array}$

    Let $x=\tan\theta$. Then $dx =\sec^2\theta d\theta$.

    When $x=0$, $\theta=0$.

    When $x=1$, $\theta=\dfrac{\pi}{4}$.

    $\begin{array}{cl}
    & \dint_0^1\dfrac{x^2}{\sqrt{x^2+1}}dx \\
    = & \dint_0^\frac{\pi}{4} \dfrac{\tan^2\theta}{\sqrt{\tan^2\theta+1}} \times \sec^2\theta d\theta \\
    = & \dint_0^\frac{\pi}{4} \dfrac{\tan^2\theta\sec^2\theta}{\sqrt{\sec^2\theta}} d\theta \\
    = & \dint_0^\frac{\pi}{4}(\sec^2\theta-1)\sec\theta d\theta \\
    = & \dint_0^\frac{\pi}{4} (\sec^3\theta-\sec\theta)d\theta \\
    = & \left[\dfrac{1}{2}\sec\theta\tan\theta+\dfrac{1}{2}\ln(\sec\theta+\tan\theta)\right]_0^\frac{\pi}{4}-\left[\ln(\sec\theta+\tan\theta)\right]_0^\frac{\pi}{4} \text{ , by the result of (a)(ii).} \\
    = & \dfrac{1}{2}\sec \dfrac{\pi}{4}\tan\dfrac{\pi}{4}+\dfrac{1}{2}\ln\left(\sec\dfrac{\pi}{4}+\tan\dfrac{\pi}{4}\right) -\dfrac{1}{2}\sec 0\tan 0 +\dfrac{1}{2}\ln(\sec 0+ \tan 0) \\
    & \ \ \ \ -\ln\left(\sec\dfrac{\pi}{4}+\tan\dfrac{\pi}{4}\right)+\ln(\sec 0+ \tan 0) \\
    = & \dfrac{1}{2}\times \sqrt{2}\times 1+\dfrac{1}{2}\ln(\sqrt{2}+1)-\dfrac{1}{2}\times 1 \times 0+\dfrac{1}{2}\ln(1+0)-\ln(\sqrt{2}+1)+\ln(1+0) \\
    = & \dfrac{\sqrt{2}}{2} -\dfrac{1}{2}\ln(\sqrt{2}+1)
    \end{array}$

Same Topic:

Default Thumbnail2021-M2-06 Default Thumbnail2022-M2-09 Default Thumbnail2023-M2-06 Default Thumbnail2023-M2-09
2021, HKDSE-M2 Tags:Differentiation, Integration

Post navigation

Previous Post: 2021-M2-08
Next Post: 2021-M2-10

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme