Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2021-M2-10

Posted on 04-09-202304-09-2023 By app.cch No Comments on 2021-M2-10
Ans: (a) $12$ (b) (i) No (ii) $42$ unit per minute

Sketch a graph according to the question.

  1. Note that the coordinates of $P$ and $Q$ are $(u, \sqrt{u^2+36}$) and $(u,-\sqrt{(20-u)^2+16})$ respectively. Therefore, we have

    $\begin{array}{cl}
    & PQ \\
    = & \sqrt{u^2+36}-(-\sqrt{(20-u)^2+16}) \\
    = & \sqrt{u^2+36}+\sqrt{(20-u)^2+16}
    \end{array}$

    Hence, we have

    $\begin{array}{rcl}
    PQ & = & \sqrt{u^2+36}+\sqrt{(20-u)^2+16} \\
    \dfrac{d}{du}(PQ) & = & \dfrac{1}{2\sqrt{u^2+36}} \times 2u+\dfrac{1}{2\sqrt{(20-u)^2-+16}}\times 2(20-u)\times(-1) \\
    \dfrac{d}{du}(PQ) & = & \dfrac{u}{\sqrt{u^2+36}}-\dfrac{20-u}{\sqrt{(20-u)^2+16}} \\
    \dfrac{d}{du}(PQ) & = & \dfrac{u\sqrt{(20-u)^2+16}-(20-u)\sqrt{u^2+36}}{\sqrt{u^2+36}\sqrt{(20-u)^2+16}}
    \end{array}$

    For the minimum value of $PQ$, we have

    $\begin{array}{rcl}
    \dfrac{d}{du}(PQ) & = & 0 \\
    \dfrac{u\sqrt{(20-u)^2+16}-(20-u)\sqrt{u^2+36}}{\sqrt{u^2+36}\sqrt{(20-u)^2+16}} & = & 0 \\
    u\sqrt{(20-u)^2+16}-(20-u)\sqrt{u^2+36} & = & 0 \\
    u\sqrt{(20-u)^2+16} & = & (20-u)\sqrt{u^2+36} \\
    u^2[(20-u)^2+16] & = & (20-u)^2(u^2+36) \\
    u^2(20-u)^2+16u^2 & = & u^2(20-u)^2+36(20-u)^2 \\
    4u^2 & = & 9(20-u)^2 \\
    (2u)^2-(60-3u)^2 & = & 0 \\
    (2u+60-3u)(2u-60+3u) & = & 0 \\
    (60-u)(5u-60) & = & 0 \\
    5(60-u)(u-12) & = & 0
    \end{array}$

    Therefore, $u=60$ or $u=12$.

    Since $0< x < 20$, then $a=12$.

    1. Let $A$ be the area of the rectangle $PQSR$.

      $\begin{array}{rcl}
      A & = & PQ \times PR \\
      A & = & \left( \sqrt{u^2+36}+\sqrt{(20-u)^2+16} \right) \times (u-0) \\
      A & = & u\left(\sqrt{u^2+36}+\sqrt{(20-u)^2+16}\right)
      \end{array}$

      Hence, we have

      $\begin{array}{rcl}
      A & = & u\left(\sqrt{u^2+36}+\sqrt{(20-u)^2+16}\right) \\
      \dfrac{d}{du}(A) & = & u\left(\dfrac{u}{\sqrt{u^2+36}}-\dfrac{20-u}{\sqrt{(20-u)^2+16}} \right)+\sqrt{u^2+36}+\sqrt{(20-u)^2+16}
      \end{array}$

      When $u=12$, we have

      $\begin{array}{rcl}
      \left. \dfrac{d}{du}(A)\right|_{u=12} & = & 12\left(\dfrac{12}{\sqrt{12^2+36}}-\dfrac{20-12}{\sqrt{(20-12)^2+16}} \right)+\sqrt{12^2+36}+\sqrt{(20-12)^2+16} \\
      \left. \dfrac{d}{du}(A)\right|_{u=12} & = & \dfrac{144}{\sqrt{180}}-\dfrac{96}{\sqrt{80}}+\sqrt{180}+\sqrt{80} \\
      \left. \dfrac{d}{du}(A)\right|_{u=12} & = & \dfrac{24\sqrt{5}}{5}-\dfrac{24\sqrt{5}}{5}+6\sqrt{5}+4\sqrt{5} \\
      \left. \dfrac{d}{du}(A)\right|_{u=12} & = & 10\sqrt{5}
      \end{array}$

      Since $\dfrac{d}{du}(A) \neq 0$, then $A$ doest not attains its minimum value when $u=12$.

      Hence, the claim is not agreed.

    2. Let $B$ be the perimeter of rectangle $PQSR$.

      $\begin{array}{rcl}
      B & = & 2(PQ+PR) \\
      B & = & 2\left( \sqrt{u^2+36}+\sqrt{(20-u)^2+16}+u\right) \\
      \dfrac{d}{dt}(B) & = & 2 \left( \dfrac{u}{\sqrt{u^2+36}}-\dfrac{20-u}{\sqrt{(20-u)^2+16}} + 1\right) \times \dfrac{du}{dt} \ \ldots \unicode{x2460}
      \end{array}$

      Note that $OP = \sqrt{u^2+u^2+36}$. Hence, we have

      $\begin{array}{rcl}
      OP & = & \sqrt{2u^2+36} \\
      \dfrac{d}{dt} (OP) & = & \dfrac{1}{2\sqrt{2u^2+36}}\times 4u \times \dfrac{du}{dt} \\
      \dfrac{d}{dt}(OP) & = & \dfrac{2u}{\sqrt{2u^2+36}}\times \dfrac{du}{dt}
      \end{array}$

      When $u=12$, we have

      $\begin{array}{rcl}
      \left. \dfrac{d}{dt}(OP)\right|_{u=12} & = & \dfrac{2(12)}{\sqrt{2(12)^2+36}} \times \left. \dfrac{du}{dt}\right|_{u=12} \\
      28 & = &\dfrac{4}{3}\times \left. \dfrac{du}{dt}\right|_{u=12} \\
      \left. \dfrac{du}{dt}\right|_{u=12} & = & 21
      \end{array}$

      Sub. $\left. \dfrac{du}{dt}\right|_{u=12} = 21$ and $u=12$ into $\unicode{x2460}$, we have

      $\begin{array}{rcl}
      \left.\dfrac{d}{dt}(B)\right|_{u=12} & = & 2 \left( \dfrac{12}{\sqrt{12^2+36}}-\dfrac{20-12}{\sqrt{(20-12)^2+16}} + 1\right) \times 21 \\
      \left.\dfrac{d}{dt}(B)\right|_{u=12} & = & 42
      \end{array}$

      Therefore, the rate of change of the perimeter of the rectangle $PQSR$ is $42$ units per minute.

Same Topic:

Default Thumbnail2021-M2-01 Default Thumbnail2021-M2-05 Default Thumbnail2021-M2-06 Default Thumbnail2021-M2-09
2021, HKDSE-M2 Tags:Differentiation

Post navigation

Previous Post: 2021-M2-09
Next Post: 2021-M2-11

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme