Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2022-I-19

Posted on 05-07-202305-07-2023 By app.cch No Comments on 2022-I-19
Ans: (a) $4x+3y-668=0$ (b) $(110,76)$ (c) $(x-128)^2+(y-52)^2=900$ (d) No

  1. The equation of the straight line passing through $A$ and $G$ is

    $\begin{array}{rcl}
    \dfrac{y-112}{x-83} & = & \dfrac{12-112}{158-83} \\
    3y-336 & = & -4x+332 \\
    4x+3y -668 & = & 0
    \end{array}$

  2. Sketch the graph according to the question.

    Without loss of generality, let $P$ be the intersection point just above the point $A$.

    The radius of $C$

    $\begin{array}{cl}
    = & \sqrt{(83-23)^2 +(112-67)^2} \\
    = & 75
    \end{array}$

    Note that $AP$ is a vertical line, then $GP$ is a horizontal line. Then the coordinates of $P$ are $(158,112)$.

    Since $AG\perp PQ$, then we have

    $\begin{array}{rcl}
    m_{PQ} \times m_{AG} & = & -1 \\
    m_{PQ} \times \dfrac{-4}{3} & = & -1 \\
    m_{PQ} & = & \dfrac{3}{4}
    \end{array}$

    Therefore, the equation of the straight line passing through $P$ and $Q$ is

    $\begin{array}{rcl}
    \dfrac{y-112}{x-158} & = & \dfrac{3}{4} \\
    4y-448 & = & 3x-474 \\
    3x-4y-26 & = & 0
    \end{array}$

    For the intersection point of $AG$ and $PQ$,

    $\left\{ \begin{array}{ll}
    4x+3y-668=0 & \ldots \unicode{x2460} \\
    3x-4y-26=0 & \ldots \unicode{x2461}
    \end{array}\right.$

    $4\times \unicode{x2460} +3 \times \unicode{x2461}$, we have

    $\begin{array}{rcl}
    25x -2750 & = & 0 \\
    x & = & 110
    \end{array}$

    Sub. $x=110$ into $\unicode{x2460}$, we have

    $\begin{array}{rcl}
    4(110)+3y-668 & = & 0 \\
    y & = & 76
    \end{array}$

    Therefore, the coordinates of the intersection point are $(110, 76)$.

  3. Let $I$ and $r$ be the in-centre and the radius of the inscribed circle of $\Delta APQ$ respectively.

    Note that the $x$-coordinate of $I$ is $158-r$. Note also that $I$ lies on $AG$. Then sub. $x=158-r$ into $4x+3y-668=0$, we have

    $\begin{array}{rcl}
    4(158-r)+3y-668 & = & 0 \\
    632-4r+3y-668 & = & 0 \\
    3y & = & 4r+36 \\
    y & = & \dfrac{4r+36}{3}
    \end{array}$

    Therefore, $I=\left(158-r, \dfrac{4r+36}{3}\right)$.

    Consider the radius of the inscribed circle of $\Delta APQ$, we have

    $\begin{array}{rcl}
    ((158-r)-110)^2 +\left(\dfrac{4r+36}{3} -76\right)^2 & = & r^2 \\
    (48-r)^2 + \left( \dfrac{4r-192}{3}\right)^2 & = & r^2 \\
    20736 -864r +9r^2 +16r^2-1536r+36864 -r^2 & = & 0 \\
    16r^2-2400r +57600 & = & 0 \\
    r^2 -150r +3600 & = & 0 \\
    (r-30)(r-120) & = & 0
    \end{array}$

    $\therefore r=30$ or $r=120$ (rejected).

    Therefore, $I=(128,52)$.

    Hence, the equation of the inscribed circle is $(x-128)^2+(y-52)^2=900$.

  4. Since $\angle APG = \angle AQG =90^\circ$, then $\angle APG + \angle AQG = 180^\circ$. Therefore, $A$, $P$, $G$ and $Q$ are concyclic.

    Hence, the circle passes through $A$, $P$, $G$ and $Q$ is the circumcircle of $\Delta APQ$.

    Since $\angle APG =90^\circ$, then $AG$ is a diameter of the circumcircle.

    Since all circles are similar, then we have

    $\begin{array}{cl}
    & \text{the area of the inscribed circle} : \text{the area of the circumcircle} \\
    = & (\text{radius of the inscribed circle})^2 : (\text{radius of the circumcircle})^2 \\
    = & 30^2 : \left(\dfrac{AG}{2}\right)^2 \\
    = & 900 : \dfrac{1}{4}[(83-158)^2+(112-12)^2] \\
    = & 900 : 3906.25 \\
    = & 144 : 624 \\
    \neq & 1:4
    \end{array}$

    Therefore, the claim is not agreed.

Same Topic:

Default Thumbnail2017-I-13 Default Thumbnail2017-II-26 Default Thumbnail2018-I-19 Default Thumbnail2022-I-12
2022, HKDSE-MATH, Paper 1 Tags:Equations of Circle

Post navigation

Previous Post: 2022-I-18
Next Post: 2022-II-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme