- Let $P(n)$ be the given statement.
For $n=1$,
$\begin{array}{cl}
& \text{LS} \\
= & \dsum_{k=1}^{2}(-1)^k k^2 \\
= & (-1)^1(1)^2+(-1)^2 (2)^2 \\
= & 3
\end{array}$$\begin{array}{cl}
& \text{RS} \\
= & (1)[2(1)+1] \\
= & 3
\end{array}$$\therefore \text{LS}=\text{RS}$.
Therefore, $P(1)$ is true.
Assume that $P(m)$ is true for some positive integer $m$.
i.e. $\dsum_{k=1}^{2m}(-1)^k k^2 =m(2m+1)$
For $n=m+1$,
$\begin{array}{cl}
& \text{LS} \\
= & \dsum_{k=1}^{2(m+1)} (-1)^k k^2 \\
= & \dsum_{k=1}^{2m}(-1)^k k^2 +(-1)^{2m+1}(2m+1)^2+(-1)^{2m+2}(2m+2)^2 \\
= & m(2m+1)-(2m+1)^2+(2m+2)^2 \\
= & (2m+1)(m-2m-1)+4(m+1)^2 \\
= & -(m+1)(2m+1)+4(m+1)^2 \\
= & (m+1)(-2m-1+4(m+1)) \\
= & (m+1)(2m+3) \\
= & \text{RS}
\end{array}$Therefore, $P(m+1)$ is also true.
$\therefore$ by mathematical induction, $P(n)$ is true for all positive integers $n$.
-
$\begin{array}{cl}
& \dsum_{k=11}^{100} (-1)^k k^2 \\
= & \dsum_{k=1}^{100}(-1)^k k^2 -\dsum_{k=1}^{10}(-1)^k k^2 \\
= & \dsum_{k=1}^{2(50)}(-1)^k k^2 -\dsum_{k=1}^{2(5)}(-1)^k k^2 \\
= & 50(2\times 50+1) -5(2\times 5+1) \\
= & 4995
\end{array}$
2022-M2-03
Ans: (b) $4995$