Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2022-M2-05

Posted on 12-08-202312-08-2023 By app.cch No Comments on 2022-M2-05
Ans: (b) $a=-1$, $b=2$, $n=5$

  1. By the binomial theorem, we have

    $\begin{array}{cl}
    & (a+x)^n \\
    = & a^n+C^n_1a^{n-1}x+C^n_2a^{n-2}x^2 +\ldots +x^n \\
    = & a^n +a^{n-1}nx+\dfrac{a^{n-2}n(n-1)}{2}x^2 +\ldots+x^n
    \end{array}$

    Since $\mu_2=-10$, we have

    $\begin{array}{rcl}
    \dfrac{a^{n-2}n(n-1)}{2} & = & -10 \\
    a^{n-2}n(n-1) & = & -20 \ \ldots \unicode{x2460}
    \end{array}$

    Note that $n$ is a positive integer greater than $1$. Then $n(n-1)$ is also a positive integer.

    Hence, $a^{n-2}$ must be a negative number.

    If $n$ is an even number, then $n-2$ is also an even number. $a^{n-2}$ will be a positive number for all values of $a$. Hence, $n$ must be an odd number.

    Since $a^{n-2}$ is a negative number and $n-2$ is an odd number, then $a$ must be a negative number.

  2. By the binomial theorem, we have

    $\begin{array}{cl}
    & (bx-1)^n \\
    = & (-1+bx)^n \\
    = & (-1)^n+C^n_1(-1)^{n-1}(bx)+C^n_2(-1)^{n-2}(bx)^2+\ldots+(bx)^n \\
    = & -1+bnx-\dfrac{b^2n(n-1)}{2}x^2+\ldots+b^nx^n \text{ , $\because n$ is an odd number.}
    \end{array}$

    Since $\lambda_0=\mu_0$, we have

    $\begin{array}{rcl}
    \lambda_0 & = & \mu_0 \\
    -1 & = & a^n \\
    a & = & -1
    \end{array}$

    Since $\lambda_1 =2\mu_1$, we have

    $\begin{array}{rcl}
    \lambda_1 & = & 2\mu_1 \\
    bn& = & 2a^{n-1}n \\
    b & = & 2(-1)^{n-1} \text{ , $\because n$ is an odd number.} \\
    b & = & 2
    \end{array}$

    Sub. $a=-1$ into $\unicode{x2460}$, we have

    $\begin{array}{rcl}
    (-1)^{n-2}n(n-1) & = & -20 \\
    n(n-1) & = & 20 \text{ , $\because n$ is an odd number.} \\
    n^2-n-20 & = & 0 \\
    (n-5)(n+4) & = & 0
    \end{array}$

    $\therefore n=5$ or $n=-4$ (rejected).

Same Topic:

Default Thumbnail2022-M2-02 Default Thumbnail2022-M2-03 Default Thumbnail2022-M2-04 Default Thumbnail2023-M2-01
2022, HKDSE-M2 Tags:Binomial Theorem

Post navigation

Previous Post: 2022-M2-04
Next Post: 2022-M2-06

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme