Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2022-M2-09

Posted on 14-08-2023 By app.cch No Comments on 2022-M2-09
Ans: (a) $x=1$, $y=x+4$ (b) max point: $(-1,1)$, min point: $(3,9)$ (d) $\pi[57-80\ln 2]$

  1. Since $f(x)$ is undefined at $x=1$. Therefore, $x=1$ is a vertical asymptote.

    Let $y=mx+c$ be an oblique asymptote of $H$.

    $\begin{array}{rcl}
    m & = & \dlim_{x\to \infty} \dfrac{f(x)}{x} \\
    m & = & \dlim_{x\to \infty} \dfrac{x^2+3x}{x(x-1)} \\
    m & = & \dlim_{x\to\infty} \dfrac{1+\frac{3}{x}}{1-\frac{1}{x}} \\
    m & = & \dfrac{1+0}{1-0} \\
    m & = & 1
    \end{array}$

    $\begin{array}{rcl}
    c & = & \dlim_{x \to\infty} \left[f(x)-mx\right] \\
    c & = & \dlim_{x\to\infty} \dfrac{x^2+3x}{x-1}-x \\
    c & = & \dlim_{x\to\infty} \dfrac{x^2+3x-x^2+x}{x-1} \\
    c & = & \dlim_{x\to\infty} \dfrac{4x}{x-1} \\
    c & = & \dlim_{x\to\infty} \dfrac{4}{1-\frac{1}{x}} \\
    c & = & \dfrac{4}{1-0} \\
    c & = & 4
    \end{array}$

    Therefore, the oblique asymptote is $y=mx+4$.

  2. $\begin{array}{rcl}
    f(x) & = & \dfrac{x^2+3x}{x-1} \\
    f'(x) & = & \dfrac{(x-1)(2x+3)-(x^2+3x)(1)}{(x-1)^2} \\
    f'(x) & = & \dfrac{2x^2+x-3-x^2-3x}{(x-1)^2} \\
    f'(x) & = & \dfrac{x^2-2x-3}{(x-1)^2} \\
    f'(x) & = & \dfrac{(x+1)(x-3)}{(x-1)^2}
    \end{array}$

    For the turning point(s),

    $\begin{array}{rcl}
    f'(x) & = & 0 \\
    \dfrac{(x+1)(x-3)}{(x-1)^2} & = & 0 \\
    (x+1)(x-3) & = & 0
    \end{array}$

    $\therefore x=-1$ or $x=3$.

    $\begin{array}{|l|c|c|c|c|c|c|} \hline
    x & x< -1 & x=-1 & -1< x <1 & 1 < x <3 & x=3 & x>3 \\ \hline
    f'(x) & +ve & 0 & -ve & -ve & 0 & +ve \\ \hline
    f(x) & \text{increasing} & \text{max. point} & \text{decreasing} & \text{decreasing} & \text{min. point} & \text{increasing} \\ \hline
    \end{array}$

    Therefore, the maximum point of $H$ is $(-1,1)$,

    and the minimum point of $H$ is $(3,9)$.

  3. Consider the intersection points of $H$ and $y=10$, we have

    $\begin{array}{rcl}
    \dfrac{x^2+3x}{x-1} & = & 10 \\
    x^2+3x & = & 10x-10 \\
    x^2-7x+10 & = & 0 \\
    (x-2)(x-5) & = & 0
    \end{array}$

    $\therefore x=2$ or $x=5$.

    The required volume

    $\begin{array}{cl}
    = & \pi \dint_2^5 \left(\dfrac{x^2+3x}{x-1}-10\right)^2 dx \\
    = & \pi \dint_2^5 \left(\dfrac{x^2-7x+10}{x-1} \right)^2 dx \\
    = & \pi \dint_2^5 \left(\dfrac{x^2-7x+6+4}{x-1} \right)^2 dx \\
    = & \pi \dint_2^5 \left(\dfrac{(x-6)(x-1)+4}{x-1} \right)^2 dx \\
    = & \pi \dint_2^5 \left( x-6+\dfrac{4}{x-1}\right)^2dx \\
    = & \pi \dint_2^5 \left( \dfrac{x^4+49x^2+100-14x^3+20x^2-140x}{x^2-2x+1}\right)dx \\
    = & \pi\dint_2^5 \dfrac{x^4-14x^3+69x^2-140x+100}{x^2-2x+1}dx \\
    = & \pi \dint_2^5 \left(x^2-12x+44+\dfrac{-40x+56}{x^2-2x+1}\right)dx \text{ , by long division.} \\
    = & \pi \dint_2^5 \left(x^2-12x+44+\dfrac{-40x+40+16}{(x-1)^2}\right)dx \\
    = & \pi \dint_2^5 \left(x^2-12x+44+\dfrac{-40(x-1)+16}{(x-1)^2}\right)dx \\
    = & \pi \dint_2^5 \left(x^2-12x+44-\dfrac{40}{x-1}+\dfrac{16}{(x-1)^2}\right)dx \\
    = & \pi\left[\dfrac{x^3}{3}-6x^2+44x-40\ln|x-1|-\dfrac{16}{x-1}\right]_2^5 \\
    = & \pi \left(\dfrac{5^3}{3}-6(5)^2+44(5)-40\ln|5-1|-\dfrac{16}{5-1}-\dfrac{2^3}{3}+6(2)^2-44(2)+40\ln |2-1|+\dfrac{16}{2-1}\right) \\
    = & \pi(57-40\ln 2^2) \\
    = & \pi(57-80\ln 2)
    \end{array}$

Same Topic:

Default Thumbnail2022-M2-07 Default Thumbnail2023-M2-06 Default Thumbnail2023-M2-07 Default Thumbnail2023-M2-09
2022, HKDSE-M2 Tags:Differentiation, Integration

Post navigation

Previous Post: 2022-M2-08
Next Post: 2022-M2-10

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme