Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2023-I-03

Posted on 13-07-2023 By app.cch No Comments on 2023-I-03
Ans: No

The maximum absolute error correct to the nearest $10\text{ g}$

$\begin{array}{cl}
= & \dfrac{1}{2} \times 10 \\
= & 5\text{ g}
\end{array}$

Therefore, the minimum possible weight of a regular packet of cheese

$\begin{array}{cl}
= & 220 -5 \\
= & 215\text{ g}
\end{array}$

Therefore, the minimum possible weight of $250$ regular packets of cheese

$\begin{array}{cl}
= & 215 \times 250 \\
= & 53750 \text{ g} \\
= & 53.75\text{ kg}
\end{array}$

The maximum absolute error correct to the nearest $0.1\text{ kg}$

$\begin{array}{cl}
= & \dfrac{1}{2} \times 0.1 \\
= & 0.05\text{ kg}
\end{array}$

Therefore, the upper limit of $53.6\text{ kg}$

$\begin{array}{cl}
= & 53.6 + 0.05 \\
= & 53.65 \text{ kg}
\end{array}$

Since the minimum possible weight of $250$ regular packets of cheese is greater than the upper limit of $53.6\text{ kg}$, then the claim is not correct.

Same Topic:

Default Thumbnail2012-II-13 Default Thumbnail2018-II-14 Default Thumbnail2020-II-14 Default Thumbnail2021-II-05
2023, HKDSE-MATH, Paper 1 Tags:Estimations and Errors

Post navigation

Previous Post: 2023-I-02
Next Post: 2023-I-04

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme