- Let $px+q$ be the quotient, where $p$ and $q$ are real constants. Then by the division algorithm, we have
$\begin{array}{rcl}
h(x) & = & g(x)(px+q) +(px+q) \\
h(x) & = & (px+q)(g(x) +1) \\
h(x) & = & (px+q)(x^3+5x^2-12x-1+1) \\
h(x) & = & (px+q)(x^3+5x^2-12x) \\
h(x) & = & px^4+(5p+q)x^3+(5q-12p)x^2-12qx
\end{array}$By comparing the coefficients of $x^4$ and $x^2$, we have
$\left\{ \begin{array}{ll}
p=3 & \ldots\unicode{x2460} \\
5q-12p = -16 & \ldots \unicode{x2461}
\end{array}\right.$Sub. $\unicode{x2460}$ into $\unicode{x2461}$, we have
$\begin{array}{rcl}
5q-12(3) & = & -16 \\
5q & = & 20 \\
q & = & 4
\end{array}$Therefore, the quotient is $3x=4$.
- For $h(x)=0$, we have
$\begin{array}{rcl}
(3x+4)(x^3+5x^2-12x) & = & 0 \\
x(3x+4)(x^2+5x-12) & = & 0
\end{array}$$\therefore x=0$ or $x=\dfrac{-4}{3}$ or $x^2+5x-12=0$.
For $x^2+5x-12=0$, we have
$\begin{array}{rcl}
x & = & \dfrac{-5\pm\sqrt{5^2-4(1)(-12)}}{2(1)} \\
x & = & \dfrac{-5 \pm \sqrt{73}}{2} \text{, which are not rational numbers.}
\end{array}$Note that only $x=0$ and $x=\dfrac{-4}{3}$ are rational numbers.
Therefore, the equation $h(x)=0$ has $2$ rational roots.
2023-I-13
Ans: (a) $3x+4$ (b) $2$