- Since $p$ and $5p$ are the roots of the equation $x^2+ax+b=0$, we have
$\left\{ \begin{array}{ll}
p+5p=\dfrac{-a}{1} & \ldots \unicode{x2460} \\
p\times 5p =\dfrac{b}{1} & \unicode{x2461}
\end{array}\right.$From $\unicode{x2460}$, we have
$\begin{array}{rcl}
6p & = & -a \\
p & = & \dfrac{-a}{6}
\end{array}$Sub. $p=\dfrac{-a}{6}$ into $\unicode{x2461}$, we have
$\begin{array}{rcl}
5\left(\dfrac{-a}{6}\right)^2 & = & b \\
5a^2 & = & 36b
\end{array}$ -
$\left\{ \begin{array}{ll}
x^2+y^2-6x-12y+20=0 & \ldots \unicode{x2460} \\
y=mx & \ldots \unicode{x2461}
\end{array}\right.$Sub. $\unicode{x2461}$ into $\unicode{x2460}$, we have
$\begin{array}{rcl}
x^2 +(mx)^2 -6x-12(mx)+20 & = & 0 \\
(1+m^2)x^2 +(-6-12m)x +20 & = & 0 \\
x^2 +\dfrac{-6-12m}{1+m^2}x +\dfrac{20}{1+m^2} & = & 0 \ \ldots (*)
\end{array}$Let $(q_1,q_2)$ and $(r_1,r_2)$ be the coordinates of $Q$ and $R$ respectively.
Since $OQ:QR =1:4$, then we have
$\begin{array}{rcl}
\dfrac{r_1}{1+4} & = & q_1 \\
r_1 & = & 5q_1
\end{array}$Hence, the roots of $(*)$ are $q_1$ and $5q_1$.
Then by the result of (a), we have
$\begin{array}{rcl}
5\left(\dfrac{-6-12m}{1+m^2}\right)^2 & = & 36 \left(\dfrac{20}{1+m^2}\right) \\
5[-6(1+2m)]^2 & = & 720(1+m^2) \\
(1+2m)^2 & = & 4(1+m^2) \\
4m^2+4m+1 & = & 4+4m^2 \\
4m & = & 3 \\
m & = & \dfrac{3}{4}
\end{array}$
2023-I-16
Ans: (b) $\dfrac{3}{4}$