Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2023-I-19

Posted on 18-07-202318-07-2023 By app.cch No Comments on 2023-I-19
Ans: (a) $G=\left(25,\dfrac{t^2-126}{t}\right)$, $H=\left(14, \dfrac{252}{t}\right)$ (b) (ii) Yes (iii) $11:12$

  1. Since $OQ$ is a median of $\Delta OPR$, then $Q$ is the mid-point of $PR$. Let $R=(a,b)$. Then by the mid-point formula, we have

    $\begin{array}{rcl}
    32 & = & \dfrac{a+50}{2} \\
    64 & = & a +50 \\
    a & = & 14
    \end{array}$

    Also,

    $\begin{array}{rcl}
    t & = & \dfrac{b+0}{2} \\
    b & = & 2t
    \end{array}$

    Therefore, $R=(14,2t)$.

    Since $OP$ is a horizontal line, then $RH$ is a vertical line. Hence, the $x$-coordinate of $H$

    $\begin{array}{cl}
    = & x\text{-coordinate of $R$} \\
    = & 14
    \end{array}$

    Let $H=(14,d)$. Since $OH \perp PR$, then we have

    $\begin{array}{rcl}
    m_{OH} \times m_{PR} & = & -1 \\
    \dfrac{d-0}{14-0}\times \dfrac{2t-0}{14-50} & = & -1 \\
    dt & = & 252 \\
    d & = & \dfrac{252}{t}
    \end{array}$

    Therefore, the coordinates of $H$ are $\left(15, \dfrac{252}{t}\right)$.

    Since $OP$ is a horizontal line, then the perpendicular bisector of $OP$ is a vertical line. Hence, the $x$-coordinate of $G$

    $\begin{array}{cl}
    = & \dfrac{0+50}{2} \\
    = & 25
    \end{array}$

    Let $G=(25,c)$. Since $Q$ is the mid-point of $PR$, then $GQ$ is the perpendicular bisector of $PR$. Hence, we have

    $\begin{array}{rcl}
    m_{GQ} \times m_{PR} & = & -1 \\
    \dfrac{c-t}{25-32} \times \dfrac{2t-0}{14-50} & = & -1 \\
    t(c-t) & = & -126 \\
    c & = & t-\dfrac{126}{t} \\
    c & = & \dfrac{t^2-126}{t}
    \end{array}$

    Therefore, the coordinates of $G$ are $\left(25, \dfrac{t^2-126}{t} \right)$.

  2. Sketch the graph according to the question.

    1. Since $\angle PQS = \angle POQ$, then we have

      $\begin{array}{rcl}
      \tan \angle PQS & = & \tan \angle POQ \\
      \dfrac{PS}{QS} & = & \dfrac{QS}{SO} \\
      \dfrac{50-32}{t-0} & = & \dfrac{t-0}{32-0} \\
      t^2 & = & 576
      \end{array}$

      $\therefore t=24$ or $t=-24$ (rejected).

    2. Note that the coordinates of $G$ and $Q$ are $\left(25, \dfrac{75}{4}\right)$ and $(32,24)$ respectively.

      The slope of $OG$

      $\begin{array}{cl}
      = & \dfrac{\frac{75}{4}-0}{25-0} \\
      = & \dfrac{3}{4}
      \end{array}$

      The slope of $OQ$

      $\begin{array}{cl}
      = & \dfrac{24-0}{32-0} \\
      = & \dfrac{3}{4}
      \end{array}$

      Since $m_{OG} =m_{OQ}$ and $O$ is the common point, then $O$, $G$ and $Q$ are collinear.

    3. Add the angle bisector of $\angle OPR$ to the graph. Let $J$ be the foot of perpendicular of $I$ on $OP$.

      Since $OQ\perp PQ$ and $IJ \perp OP$, then $QP$ and $JP$ are tangents to the inscribed circle of $\Delta OPR$ at $Q$ and $J$ respectively.

      $\begin{array}{rcl}
      QP & = & \sqrt{(32-50)^2+(24-0)^2} \\
      QP & = & 30
      \end{array}$

      Therefore, the coordinates of $J$ are $(50-30, 0)$, i.e. $(20,0)$.

      Since $IJ$ is a vertical line, then the $x$-coordinates of $I$ and $J$ are equal. Let $I=(20,e)$.

      Note that $IJ$ and $IQ$ are radii of the inscribed circle of $\Delta OPR$.

      $\begin{array}{rcl}
      IJ & = & IQ \\
      e & = & \sqrt{(32-20)^2+(24-e)^2} \\
      e^2 & = & 144 +576-48e+e^2 \\
      48e & = & 720 \\
      e & = & 15
      \end{array}$

      Therefore, the coordinates of $I$ are $(20,15)$.

      By the result of (a) and (b)(i), the coordinates of $H$ are $\left(14,\dfrac{21}{2}\right)$.

      Since $OQ$ is the perpendicular bisector of $PR$, then we have $PQ=RQ$ and $OQ\perp PR$.

      $\begin{array}{cl}
      & \text{area of $\Delta GHR$} : \text{area of $\Delta IPQ$} \\
      = & \dfrac{1}{2}(GH)(RQ) : \dfrac{1}{2} (IQ)(PQ) \\
      = & GH : IQ \\
      = & \sqrt{(25-14)^2+\left(\dfrac{75}{4}-\dfrac{21}{2}\right)^2} : \sqrt{(32-20)^2+(24-15)^2} \\
      = & \dfrac{55}{4} : 15 \\
      = & 11 : 12
      \end{array}$

Same Topic:

Default Thumbnail2012PP-I-06 Default Thumbnail2012PP-II-25 Default Thumbnail2013-I-06 Default Thumbnail2016-I-07
2023, HKDSE-MATH, Paper 1 Tags:Coordinates

Post navigation

Previous Post: 2023-I-18
Next Post: 2023-II-01

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme