Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

2023-II-20

Posted on 24-07-202324-07-2023 By app.cch No Comments on 2023-II-20
Ans: A

Since $ABCD$ is a square, $\angle BAD=90^\circ$.

Since $ADEFG$ is a regular pentagon, then $\angle DAG$

$\begin{array}{cl}
= & \dfrac{1}{5} \times(5-2)\times 180^\circ \\
= & 108^\circ
\end{array}$

Since $AGHIJK$ is a regular hexagon, then $\angle GAK$

$\begin{array}{cl}
= & \dfrac{1}{6} \times (6-2)\times 180^\circ \\
= & 120^\circ
\end{array}$

In $\Delta ABK$,

$\begin{array}{rcll}
\angle BAK & = & 360^\circ -\angle BAD -\angle DAG -\angle GAK & \text{($\angle$s at a pt)} \\
\angle BAK & = & 360^\circ-90^\circ-108^\circ-120^\circ \\
\angle BAK & = & 42^\circ
\end{array}$

Since $AB=AK$, then we have

$\begin{array}{rcll}
\angle ABK & = & \angle AKB & \text{(base $\angle$s, isos. $\Delta$)}
\end{array}$

Hence, we have

$\begin{array}{rcll}
\angle ABK & = & \dfrac{1}{2}(180^\circ -\angle BAK) & \text{($\angle$ sum of $\Delta$)} \\
\angle ABK & = & \dfrac{1}{2}(180^\circ-42^\circ) \\
\angle ABK & = & 69^\circ
\end{array}$

Same Topic:

Default Thumbnail2016-I-13 Default Thumbnail2023-I-08 Default Thumbnail2023-II-18 Default Thumbnail2023-II-19
2023, HKDSE-MATH, Paper 2 Tags:Basic Geometry

Post navigation

Previous Post: 2023-II-19
Next Post: 2023-II-21

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme