2023-M2-03 Posted on 01-08-2023 By app.cch No Comments on 2023-M2-03 Ans: (a) p=4, q=1 (b) π+32ln2 11sinx+7cosx≡p(3sinx+cosx)+q(3cosx−sinx)11sinx+7cosx≡(3p−3q)sinx+(p+3q)cosx By comparing the components of both sides, we have ①②{3p−q=11…①p+3q=7…② ①②①−3×②, we have −10q=−10q=1 Sub. q=1 into ②②, we have p+3(1)=7p=4 ∫0π411sinx+7cosx3sinx+cosxdx=∫0π44(3sinx+cosx)+(3cosx−sinx)3sinx+cosxdx=∫0π44dx+∫0π43cosx−sinx3sinx+cosxdx=4∫0π4dx+∫0π4d(3sinx+cosx)3sinx+cosx=4[x]0π4+[ln|3sinx+cosx|]0π4=4×π4+ln|3sinπ4+cosπ4|−ln|3sin0+cos0|=π+ln(3×22+22)−ln1=π+ln22=π+ln232=π+32ln2 Same Topic: 2020-I-13 2020-II-26 2023-M2-01 2023-M2-02 2023, HKDSE-M2 Tags:Integration