Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

3. Binomial Theorem

Posted on 18-12-202318-12-2023 By app.cch No Comments on 3. Binomial Theorem

If $n$ is a positive integer and $0 \le r \le n$, then

$$\begin{array}{rcl}
(a+b)^n & = & C^n_0a^n+C^n_1a^{n-1}b+C^n_2a^{n-2}b^2+\ldots+C^n_ra^{n-r}b^r+\ldots+C^n_nb^n \\
& = & \dsum_{r=0}^nC^n_ra^{n-r}b^r
\end{array}$$

Since $C^n_r=C^n_{n-r}$, the binomial theorem can be rewritten as

$$\begin{array}{rcl}
(a+b)^n & = & C^n_0b^n+C^n_1ab^{n-1}+C^n_2a^2b^{n-2}+\ldots+C^n_ra^rb^{n-r}+\ldots+C^n_na^n \\
& = & \dsum_{r=0}^nC^n_ra^rb^{n-r}
\end{array}$$

Expand $(1-2x)^5$ in ascending powers of $x$.

$\begin{array}{cl}
& (1-2x)^5 \\
= & C^5_0 (1)^5+C^5_1(1)^4(-2x)+C^5_2(1)^3(-2x)^2+C^5_3(1)^2(-2x)^3+C^5_4(1)(-2x)^4+C^5_5(-2x)^5 \\
= & 1-10x+40x^2-80x^3+80x^4-32x^5
\end{array}$

  1. Expand $(1+3x)^n$ in ascending powers of $x$ up to the term $x^2$, where $n$ is a positive integer.
  2. If the coefficient of $x^2$ in the expansion in (a) is $90$, then find the value of $n$.
  1. $\begin{array}{cl}
    & (1+3x)^n \\
    = & C^n_0(1)^n+C^n_1(1)^{n-1}(3x)+C^n_2(1)^{n-2}(3x)^2+\ldots \\
    = & 1+3nx+\dfrac{9n(n-1)}{2}x^2+\ldots
    \end{array}$

  2. Since the coefficient of $x^2$ is $90$, by the result of (a), we have

    $\begin{array}{rcl}
    \dfrac{9n(n-1)}{2} & = & 90 \\
    n(n-1) & = & 20 \\
    n^2-n-20 & = & 0 \\
    (n-5)(n+4) & = & 0
    \end{array}$

    $\therefore n=5$ or $n=-4$ (rejected).

Same Topic:

Default Thumbnail1. Permutation and Combination Default Thumbnail2. Properties of Combination Default Thumbnail2020-M1-01 Default Thumbnail2023-M2-01
Binomial Theorem, M2, Revision Note Tags:Binomial Theorem

Post navigation

Previous Post: 1. Permutation and Combination
Next Post: 1. Radian Measure

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme