Let $T(1)$, $T(2)$, …, $T(n)$ be an arithmetic sequence and $d$ be the common difference. For natural number $n$ and $n>1$,
- The general term
\begin{equation*}
T(n)=T(1)+(n-1)d
\end{equation*} - The sum of the first $n$ terms
\begin{equation*}
S(n)=\frac{n}{2}[2T(1)+(n-1)d]
\end{equation*}
or
\begin{equation*}
S(n)=\frac{n}{2}[T(1)+T(n)]
\end{equation*}