For any real numbers $a$, $b$ and $c$.
- Transition law
If $a>b$ and $b>c$, then we have $a>c$.
- Addition law
If $a>b$, then we have $a+c>b+c$.
- Multiplication law
- If $a > b$ and $c > 0$, then we have $ac > bc$.
- If $a > b$ and $c < 0$, then we have $ac < bc$.
- Inverse law
- If $a > b > 0$, then $\dfrac{1}{b}>\dfrac{1}{a}>0$.
- If $a < b < 0$, then $\dfrac{1}{b}<\dfrac{1}{a}<0$.
- Non-negative law
For any real number $a$, $a^2 \ge 0$.