Let $T(1)$, $T(2)$, …, $T(n)$ be an geometric sequence and $r$ be the common ratio. For natural number $n$ and $n>1$,
- The general term
\begin{equation*}
T(n)=T(1)r^{n-1}
\end{equation*} - The sum of the first $n$ term
\begin{equation*}
S(n)=\frac{T(1)(1-r^n)}{1-r}
\end{equation*}
or
\begin{equation*}
S(n)=\frac{T(1)(r^n-1)}{r-1}
\end{equation*} - The sum to infinity
\begin{equation*}
S(\infty) =\frac{T(1)}{1-r}\ \mbox{ for } -1 < r < 1 \end{equation*}