For any real numbers $\alpha$ and $\beta$, $\alpha<\beta$.
- If $(x-\alpha)(x-\beta)\ge 0$, then we have
\begin{equation*}
x\le\alpha\mbox{ or }x\ge\beta.
\end{equation*} - If $(x-\alpha)(x-\beta)\le 0$, then we have
\begin{equation*}
\alpha\le x\le \beta.
\end{equation*}