Let $\{x_1,~x_2,~\ldots,x_n\}$ be a set of data.
- The mean
\begin{eqnarray*}
\overline{x} & = & \sum_{i=1}^n \frac{x_i}{n} \\
& = & \frac{x_1+x_2+\cdots+x_n}{n}
\end{eqnarray*} - The variance
\begin{eqnarray*}
\sigma^2 & = & \sum_{i=1}^n \frac{(x_i-\overline{x})^2}{n} \\
& = & \frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+\cdots+(x_n-\overline{x})^2}{n}
\end{eqnarray*} - The standard deviation
\begin{eqnarray*}
\sigma & = & \sqrt{\sum_{i=1}^n \frac{(x_i-\overline{x})^2}{n}} \\
& = & \sqrt{\frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+\cdots+(x_n-\overline{x})^2}{n}}
\end{eqnarray*} - The standard score
\begin{eqnarray*}
z & = & \dfrac{x_i -\bar{x}}{\sigma}\ \text{, for $i=1,2, \ldots, n$.}
\end{eqnarray*}