Let $\{x_1,~x_2,~\ldots,~x_n\}$ be a set of data. Let $\overline{x}$, $m$ and $M$ be the mean, median and mode of the data respectively. Let $R$, $Q$ and $\sigma$ be the range, inter-quartile range and standard deviation of the data respectively.
- Adding a constant $k$ to each data
- The new mean $=\overline{x}+k$
- The new median $=m+k$
- The new mode $=M+k$
- The new range $=R$
- The new inter-quartile range $=Q$
- The new variance $=\sigma^2$
- The new standard deviation $=\sigma$
- Multiplying a constant $k$ to each data
- The new mean $=k\overline{x}$
- The new median $=km$
- The new mode $=kM$
- The new range $=kR$
- The new inter-quartile range $=kQ$
- The new variance $=k^2\sigma^2$
- The new standard deviation $=k\sigma$