- $\sin^2\theta+\cos^2\theta =1$
- $\tan\theta=\dfrac{\sin\theta}{\cos\theta}$
- $\sin(-\theta)=-\sin\theta$
- $\cos(-\theta)=\cos\theta$
- $\tan(-\theta) = -\tan\theta$
- $\sin (180^\circ-\theta)=\sin\theta$
- $\cos (180^\circ-\theta)=-\cos\theta$
- $\tan (180^\circ-\theta)=-\tan \theta$
- $\sin (180^\circ+\theta)=-\sin\theta$
- $\cos (180^\circ+\theta)=-\cos\theta$
- $\tan (180^\circ+\theta)=\tan\theta$
- $\sin (360^\circ – \theta) = -\sin\theta$
- $\cos (360^\circ-\theta)=\cos\theta$
- $\tan (360^\circ-\theta)=-\tan\theta$
- $\sin (90^\circ-\theta)=\cos\theta$
- $\cos (90^\circ-\theta) = \sin\theta$
- $\tan(90^\circ-\theta) = \dfrac{1}{\tan\theta}$
- $\sin(90^\circ+\theta)=\cos\theta$
- $\cos(90^\circ+\theta)=-\sin\theta$
- $\tan(90^\circ+\theta)=\dfrac{-1}{\tan\theta}$
- $\sin(270^\circ-\theta)=-\cos\theta$
- $\cos(270^\circ-\theta)=-\sin\theta$
- $\tan(270^\circ-\theta)=\dfrac{1}{\tan\theta}$
- $\sin(270^\circ+\theta)=-\cos\theta$
- $\cos(270^\circ+\theta)=\sin\theta$
- $\tan(270^\circ+\theta)=\dfrac{-1}{\tan\theta}$