Skip to content
  • Home
  • 中文 (香港)
Solving Master

Solving Master

Resources for HKDSE Mathematics

  • Revision Note
    • Math
      • Number and Algebra
        • Complex Number
        • Errors and Estimations
        • Exponential and Logarithm
        • Identities
        • Inequalities
        • Percentage
        • Polynomials
        • Quadratic Equation and Function
        • Sequences
        • Variations
      • Measures, Shape and Space
        • Coordinates
        • Lines and Angles
        • Mensuration
        • Properties of Circle
        • Quadrilaterals
        • Transformations
        • Triangles
        • Trigonometry
      • Data Handling
        • Probability
        • Statistics
    • M2
      • Mathematical Induction
      • Binomial Theorem
      • Trigonometry (M2)
  • HKDSE-MATH
    • 2023
      • Paper 1
      • Paper 2
    • 2022
      • Paper 1
      • Paper 2
    • 2021
      • Paper 1
      • Paper 2
    • 2020
      • Paper 1
      • Paper 2
    • 2019
      • Paper 1
      • Paper 2
    • 2018
      • Paper 1
      • Paper 2
    • 2017
      • Paper 1
      • Paper 2
    • 2016
      • Paper 1
      • Paper 2
    • 2015
      • Paper 1
      • Paper 2
    • 2014
      • Paper 1
      • Paper 2
    • 2013
      • Paper 1
      • Paper 2
    • 2012
      • Paper 1
      • Paper 2
    • 2012PP
      • Paper 1
      • Paper 2
    • 2011SP
      • Paper 1
      • Paper 2
  • HKDSE-M2
    • 2023
    • 2022
    • 2021
    • 2020
  • HKCEE
    • 2011
      • Paper 1
      • Paper 2
    • 2010
      • Paper 1
      • Paper 2
    • 2009
      • Paper 1
      • Paper 2
    • 2008
      • Paper 1
      • Paper 2
    • 2007
      • Paper 1
      • Paper 2
    • 2006
      • Paper 1
      • Paper 2
  • Other Resources
  • Toggle search form

Vertex Form of Quadratic Function

Posted on 12-07-202312-07-2023 By app.cch No Comments on Vertex Form of Quadratic Function

For quadratic function $y=ax^2+bx+c$, where $a$, $b$ and $c$ are real numbers, and $a\neq 0$.

  1. The graph of $y=a(x-h)^2+k$

    Properties

    1. If $a>0$, then the graph opens upwards. If $a<0$, then the graph opens downwards.
    2. The equation of the axis of the symmetry of the graph is $x=h$.
    3. The coordinates of the vertex is $(h,k)$.
    4. For $a>0$, the minimum value of $y$ is $k$ and the corresponding value of $x$ is $h$. For $a<0$, the maximum value of $y$ is $k$ and the corresponding value of $x$ is $h$.
  2. Completing the square
    1. $\begin{array}{cl}
      & x^2 + 8x + 12 \\
      = & x^2 + 8x + \left(\dfrac{8}{2}\right)^2 – \left(\dfrac{8}{2}\right)^2 + 12 \\
      = & (x^2 + 8x + 4^2) – 4^2 + 12 \\
      = & (x+4)^2 – 4
      \end{array}$
    2. $\begin{array}{cl}
      & x^2 – 8x – 12 \\
      = & x^2 – 8x + \left(\dfrac{8}{2}\right)^2 – \left(\dfrac{8}{2}\right)^2 – 12 \\
      = & (x^2 – 8x + 4^2) – 4^2 – 12 \\
      = & (x-4)^2 – 26
      \end{array}$
    3. $\begin{array}{cl}
      & 2x^2 + 8x + 12 \\
      = & 2(x^2 + 4x) + 12 \\
      = & 2[x^2 + 4x + \left(\dfrac{4}{2}\right)^2 – \left(\dfrac{4}{2}\right)^2] + 12 \\
      = & 2(x^2 + 4x + 2^2) – 2(2)^2 + 12 \\
      = & 2(x+2)^2 – 4
      \end{array}$
    4. $\begin{array}{cl}
      & \dfrac{1}{3}x^2 + 4x + 15 \\
      = & \dfrac{1}{3}(x^2 + 12x) + 15 \\
      = & \dfrac{1}{3}[x^2 + 12x + \left(\dfrac{12}{2}\right)^2 – \left(\dfrac{12}{2}\right)^2] + 15 \\
      = & \dfrac{1}{3}(x^2 + 12x + 6^2) – 12 + 15 \\
      = & \dfrac{1}{3}(x+6)^2 + 3
      \end{array}$
  3. The coordinates of the vertex $(h,k)$
    \begin{equation*}
    h=\frac{-b}{2a} \mbox{, } k=\frac{4ac-b^2}{4a}
    \end{equation*}

Same Topic:

Default ThumbnailDiscriminant Default ThumbnailQuadratic Formula Default ThumbnailRemainder Theorem Default ThumbnailThe Sum and the Product of the Roots
Math, Number and Algebra, Quadratic Equation and Function, Revision Note

Post navigation

Previous Post: Discriminant
Next Post: The Sum and the Product of the Roots

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Topic Cloud

3D Problems (41) Basic Functions (13) Basic Geometry (68) Binomial Theorem (7) Change of Subject (32) Complex Numbers (16) Coordinates (46) Differentiation (16) Equations of Circle (54) Equations of Straight Line (43) Estimations and Errors (35) Factorization (39) Graph of Functions (3) Inequality (39) Integration (15) Laws of Indices (43) Linear Programming (21) Locus (13) Logarithm (34) Mathematical Induction (7) Matrices (4) Mensuration (98) Numeral System (19) Percentage (42) Polynomials (49) Probability (85) Properties of Circles (56) Quadratic Equations and Functions (57) Rate and Ratio (30) Rational Functions (20) Sequences (66) Simultaneous Linear Equations (27) Statistics (122) System of Linear Equations (3) Transformations (44) Trigonometry (M2) (7) Trigonometry and Its Applications (67) Variations (38) Vectors (3)

Copyright © 2025 Solving Master.

Powered by PressBook Grid Blogs theme