設 $f(x,y)=2x-3y+180$。對於 $P$ 點的坐標,把 $y=0$ 代入 $3x+y=36$,可得
$\begin{array}{rcl}
3x + (0) & = & 36 \\
x & = & 12
\end{array}$
所以,$P=(12,0)$。由此,可得
$\begin{array}{rcl}
f(12,0) & = & 2(12)-3(0) + 180 \\
& = & 204
\end{array}$
對於 $Q$ 點的坐標,
$\left\{ \begin{array}{ll}
3x+y = 36 & \ldots \unicode{x2460} \\
x+y = 20 & \ldots \unicode{x2461}
\end{array}\right.$
$\unicode{x2460} – \unicode{x2461}$,可得
$\begin{array}{rcl}
2x & = & 16 \\
x & = & 8
\end{array}$
把 $x=8$ 代入$\unicode{x2461}$,可得
$\begin{array}{rcl}
(8) + y & = & 20 \\
y & = & 12
\end{array}$
所以,$Q=(8,12)$。由此,可得
$\begin{array}{rcl}
f(8,12) & = & 2(8) – 3(12) +180 \\
& = & 160
\end{array}$
對於 $R$ 點的坐標,把 $x=0$ 代入 $x+y=20$,可得
$\begin{array}{rcl}
(0) + y & = & 20 \\
y & = & 20
\end{array}$
所以,$R=(0,20)$。由此,可得
$\begin{array}{rcl}
f(0,20) & = & 2(0) – 3(20) +180 \\
& = & 120
\end{array}$
對於 $O$ 點,可得
$\begin{array}{rcl}
f(0,0) & = & 2(0) -3(0) +180 \\
& = & 180
\end{array}$
所以,極小值為 $120$。