-
- 利用餘弦公式於 $\Delta BCD$ 中,可得
$\begin{array}{rcl}
CD^2 & = & BD^2 + BC^2 -2 (BD)(BC)\cos \angle ABC \\
& = & 6^2 + 25^2 -2(6)(25)\cos 57^\circ \\
& = & 497.608~289~5 \\
CD & = & 22.307~135~39 \text{ cm} \\
& \approx & 22.3\text{ cm}
\end{array}$ - 利用正弦公式於 $\Delta ABC$ 中,可得
$\begin{array}{rcl}
\dfrac{BC}{\sin \angle BAC} & = & \dfrac{AC}{\sin ABC} \\
\dfrac{25}{\sin \angle BAC} & = & \dfrac{28}{\sin 57^\circ} \\
\sin \angle BAC & = & \dfrac{25\sin57^\circ}{28} \\
& = & 0.748~813~007 \\
\angle BAC & = & 48.487~661~26^\circ \\
& \approx & 48.5^\circ
\end{array}$ -
$\begin{array}{cl}
& \angle ACB \\
= & 180^\circ – 57^\circ – 48.487~661~26^\circ \\
= & 74.512~338~74^\circ
\end{array}$由此,$\Delta ABC$ 的面積
$\begin{array}{cl}
= & \dfrac{1}{2} \times AC \times BC \times \sin \angle ACB \\
= & \dfrac{1}{2} \times 28 \times 25 \times \sin 74.512~338~74^\circ \\
= & 337.290~793~4 \text{ cm}^2 \\
\approx & 337 \text{ cm}^2
\end{array}$ - 設 $h \text{ cm}$ 為由 $E$ 至水平地面的最短距離。留意由 $E$ 至水平地面的最短距離是以 $\Delta ABC$ 為底,四面體 $ABCE$ 的高。則四面體 $ABCE$ 的體積
$\begin{array}{cl}
= & \dfrac{1}{3} \times h \times 337.290~793~4 ~\ldots \unicode{x2460}
\end{array}$利用正弦公式於 $\Delta ABC$ 中,可得
$\begin{array}{rcl}
\dfrac{AB}{\sin \angle ACB} & = & \dfrac{AC}{\sin \angle ABC} \\
\dfrac{AB}{\sin 74.512~338~74^\circ } & = & \dfrac{28}{\sin 57^\circ} \\
AB & = & \dfrac{28 \sin 74.512~338~74^\circ }{\sin 57^\circ} \\
& = & 32.173~852~88\text{ cm}
\end{array}$留意 $CE$ 垂直於金屬薄片 $ABE$,所以 $\angle CEB = \angle CED = \angle CEA = 90^\circ$。利用畢氏定理於 $\Delta BCE$,可得
$\begin{array}{rcl}
CE^2 & = & BC^2 – BE^2 \\
CE & = & \sqrt{25^2 – 24^2} \\
& = & 7 \text{ cm}
\end{array}$再利用畢氏定理於 $\Delta ACE$ 中,可得
$\begin{array}{rcl}
AE^2 & = & AC^2 – CE^2 \\
AE & = & \sqrt{28^2 – 7^2} \\
& = & \sqrt{735}\text{ cm}
\end{array}$利用希羅公式於 $\Delta ABE$ 中,可得
$\begin{array}{rcl}
s & = & \dfrac{AB + BE + AE}{2} \\
& = & 41.642~368~15 \text{ cm}
\end{array}$所以,$\Delta ABE$ 的面積
$\begin{array}{cl}
= & \sqrt{ s (s-AB)(s-BE)(s-AE)} \\
= & 317.937~742~9 \text{ cm}^2
\end{array}$留意 $CE$ 是以 $\Delta ABE$ 為底,四面體 $ABCE$ 的高。由此,四面體 $ABCE$ 的體積為
$\begin{array}{cl}
= & \dfrac{1}{3} \times 317.937~742~9 \times 7 \\
= & 741.854~733~5 \text{ cm}^3 ~\ldots \unicode{x2461}
\end{array}$比較 $\unicode{x2460}$ 及 $\unicode{x2461}$,可得
$\begin{array}{rcl}
\dfrac{1}{3} \times h \times 337.290~793~4 & = & 741.~854~733~5 \\
h & = & 6.598~354~429\text{ cm} \\
& \approx & 6.60\text{ cm}
\end{array}$所以,所求的距離為 $6.60\text{ cm}$。
- 利用餘弦公式於 $\Delta BCD$ 中,可得
- 利用畢氏定理於 $\Delta BDE$ 中,可得
$\begin{array}{rcl}
DE^2 & = & CD^2 – CE^2 \\
DE & = & \sqrt{22.307~135~39^2 – 7^2} \\
& = & 21.180~375~1\text{ cm}
\end{array}$設 $\theta$ 為 $DE$ 與水平地面間之交角。由此,可得
$\begin{array}{rcl}
\sin \theta & = & \dfrac{h}{DE} \\
& = & \dfrac{6.598~354~429}{21.180~375~1} \\
\theta & = & 18.151~551~2^\circ
\end{array}$考慮 $\Delta CDE$,
$\begin{array}{rcl}
\tan \angle CDE & = & \dfrac{CE}{DE} \\
& = & \dfrac{7}{21.180~375~1} \\
\angle CDE & = & 18.288~442~66^\circ \\
& \neq & \theta
\end{array}$所以,我不同意該宣稱。
2009-I-17
答案:(a) (i) $22.3\text{ m}$ (ii) $48.5^\circ$ (iii) $337\text{ cm}^2$ (iv) $6.60\text{ cm}$ (b) 不同意